Office Hours

Thursday: 12-1
Room: GCS 342

Restart and Unassign

- Maple will save variable and function definitions
- This can cause problems when plotting expressions or performing calculations
- When starting to work with Maple, it is a good idea to enter the following command to clear all variables in memory
- restart
- To clear the value assigned to a specific variable use the unassign command
- For example, to clear the value assigned to x :
- unassign(' ${ }^{\prime}$ ')
- Be sure to include the single quotation marks around the variable name, or else the command will not execute properly.

Functions vs. Expressions

- To define an expression in Maple:
- $\mathrm{f} 1:=x^{3}-8$
- $\mathfrak{f} 2:=y^{3}+1$
- Defined explicitly in terms of the variable chosen (i.e. x, y, etc.)
- To define a function in Maple:
- $\mathrm{g} 1:=\mathrm{x}->x^{3}-8$
- $\mathrm{g} 2:=\mathrm{y}->y^{3}+1$
- Treats variable chosen as a more generic input
- Choosing to use a Maple expression or a Maple function results in subtle differences
- For example, when adding two expressions:
- f3:=f1+f2

$$
\mathrm{f} 3:=x^{3}+y^{3}-7
$$

- Now if we add our two functions:
- g3:=g1+g2

$$
\mathrm{g} 3:=\mathrm{g} 1+\mathrm{g} 2
$$

- $\mathrm{g} 3(\mathrm{x})$

$$
2 x^{3}-7
$$

- To evaluate an expression at a given point:
- $\operatorname{subs}(\mathrm{x}=0, \mathrm{f} 1)$
- $\operatorname{subs}(x=0, y=1, f 3)$

Correction

- In the lab last week, I stated that for many of the Maple operations to work, such as differentiation, mathematical statements had to be declared as functions.
- This is in fact, somewhat incorrect. Maple operations such as differentiation, limits, etc. work in a more direct fashion when mathematical statements are declared as expressions.

Calculating Limits with Maple

- Consider the function defined as follows
- $\mathrm{f}:=\mathrm{x}->\frac{4 x^{2}-3 x}{19 x^{2}-11}$
- To evaluate the limit the following command will not work:
- limit(f, x = infinity)

$$
\mathrm{f}
$$

- Rather, the command must be entered as follows:
- $\operatorname{limit}(f(x), x=$ infinity $)$

$$
\frac{4}{19}
$$

If we had instead defined this rational expression as a Maple expression:

- $\mathrm{f}:=\frac{4 x^{2}-3 x}{19 x^{2}-11}$

The following line of code would work to find the limit:
$\operatorname{limit}(\mathrm{f}, \mathrm{x}=$ infinity $)$

$$
\frac{4}{19}
$$

- You can save worksheets as PDFs to print from home.
- In Maple
- File -> Export as
- Choose the appropriate file type, name and file path.

To insert lines into a previously executed Maple document or worksheet

- Math line above: ctrl + k
- Text line above: ctrl + shift + k
- Math line below: ctrl + j
- Text line below: ctrl + shift +j
- Maple can also plot implicit functions
- Consider the unit circle

$$
\begin{gathered}
x^{2}+y^{2}-1=0 \\
\text { Or } \\
x^{2}+y^{2}=1
\end{gathered}
$$

- To plot in Maple use the implicitplot command, which must be proceeded by the with(plots) command
- with(plots)
- Will show as output a list of all of the maple plot functions that have been enabled
- implicitplot $\left(x^{2}+y^{2}=1, \mathrm{x}=-3 . .3, \mathrm{y}=-3 . .3\right)$

Maple can also plot functions in 3 - dimensional space

- Consider the same unit circle $x^{2}+y^{2}=1$ as a cylinder in the xyz - plane
- To visualize this using maple, use the with(plots) command followed by implicitplot3d() command
- In this case, the second command would be as follows:

$$
\operatorname{implicitplot} 3 \mathrm{~d}\left(x^{2}+y^{2}=1, \mathrm{x}=-2 . .2, \mathrm{y}=-2 . .2, \mathrm{z}=-2 . .2\right)
$$

- The scale for the x, y, and z axes must be specified in the command.

Maple Plot Options

- Maple provides many options to personalize plots created
- For an extensive list:
https://www.maplesoft.com/support/help/maple/view.aspx?path=plot\%2Foptions
- Or type into a search engine: "maple plot options"

References

1. http://home.wlu.edu/~finchc/Teaching/Math101E/Mapl eLabs/SailCalcMaple01.pdf
2. https://www.maplesoft.com/applications/view.aspx?sid =1520\&view=html
