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Trent University, Fall 2018

MATH 1110H Test
Friday, 2 November

Time: 11:00–11:50
Space: SC 137

Name: M.Y. Solutions

Student Number: 2.718281

Question Mark

1
2
3

Total /30

Instructions
• Show all your work. Legibly, please! Simplify where you reasonably can.
• If you have a question, ask it!
• Use the back sides of all the pages for rough work or extra space.
• You may use a calculator and (all sides of) an aid sheet.
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1. Compute
dy

dx
for any four (4) of parts a–f. [12 = 4 × 3 each]

a. y = ln (sec(x) + tan(x)) b. (x+ y)2 = x2 + y2 + 1 c. y =
x2 + 1

x+ 2

d. y = cos(2x) sin(2x) e. y = sinh(x) + cosh(x) f. y = e
√
x

Solutions. a. Chain Rule and trig derivatives, with some algebra to simplify afterwards.

dy

dx
=

d

dx
ln (sec(x) + tan(x)) =

1

sec(x) + tan(x)
· d
dx

(sec(x) + tanx)

=
1

sec(x) + tan(x)
·
(
sec(x) tan(x) + sec2(x)

)
=

sec(x) (tan(x) + sec(x))

sec(x) + tan(x)
= sec(x) �

b. [Solve for y first.] Since (x+ y)2 = x2 + 2xy+ y2, it follows from (x+ y)2 = x2 + y2 + 1

that 2xy = 1, so y =
1

2x
=

1

2
· x−1. This means, using the Power Rule, that:

dy

dx
=

d

dx

(
1

2
· x−1

)
=

1

2
· (−1)x−2 = − 1

x2
�

b. [Differentiate first.] Implicit differentiation, here we come! With a bit of the Chain and
Power Rules, too:

d

dx

(
(x+ y)2

)
=

d

dx

(
x2 + y2 + 1

)
=⇒ 2(x+ y)

d

dx
(x+ y) = 2x+ 2y

dy

dx
+ 0

=⇒ 2(x+ y)

(
1 +

dy

dx

)
= 2x+ 2y

dy

dx
=⇒ 2(x+ y) + 2(x+ y)

dy

dx
= 2x+ 2y

dy

dx

=⇒ 2(x+ y)
dy

dx
− 2y

dy

dx
= 2x− 2(x+ y) =⇒ 2x

dy

dx
= −2y =⇒ dy

dx
= −2y

2x
= −y

x

That’s as far as this goes without solving for y, but it’s enough for full marks. �

c. Quotient and Power Rules.

dy

dx
=

d

dx

(
x2 + 1

x+ 2

)
=

[
d
dx

(
x2 + 1

)]
(x+ 2)−

(
x2 + 1

) [
d
dx (x+ 2)

]
(x+ 2)2

=
[2x] (x+ 2)−

(
x2 + 1

)
[1]

(x+ 2)2
=

2x2 + 4x− x2 − 1

(x+ 2)2
=
x2 + 4x− 1

(x+ 2)2
�

d. [Simplify first.] We’ll use the double angle formula for sin, followed by the Chain Rule:

dy

dx
=

d

dx
(cos(2x) sin(2x)) =

d

dx

(
1

2
· 2 cos(2x) sin(2x)

)
=

d

dx

1

2
sin(4x)

=
1

2
cos(4x) · d

dx
(4x) =

1

2
cos(4x) · 4 = 2 cos(4x) �



d. [Differentiate first.] Product and Chain Rules, away! Double angle formula for cos,
help out!

dy

dx
=

d

dx
(cos(2x) sin(2x)) =

[
d

dx
cos(2x)

]
· sin(2x) + cos(2x) ·

[
d

dx
sin(2x)

]
=

[
− sin(2x)

d

dx
(2x)

]
· sin(2x) + cos(2x)

[
cos(2x)

d

dx
(2x)

]
= [−2 sin(2x)] · sin(2x) + cos(2x) [2 cos(2x)]

= −2 sin2(2x) + 2 cos2(2x) = 2 cos(4x) �

e. [Differentiate away.]
dy

dx
=

d

dx
(sinh(x) + cosh(x)) = cosh(x) + sinh(x) If you would

like to simplify this, see below. �

e. [Simplify (?) first.] We’ll go back to the definition of sinh and cosh and do a little
algebra first:

dy

dx
=

d

dx
(sinh(x) + cosh(x)) =

d

dx

(
ex − e−x

2
+
ex + e−x

2

)
=

d

dx

(
ex − e−x + ex + e−x

2

)
=

d

dx

(
2ex

2

)
=

d

dx
ex = ex �

f. Chain Rule and a bit of the Power Rule:

dy

dx
=

d

dx
e
√
x = e

√
x · d

dx

√
x = e

√
x · d

dx
x1/2 = e

√
x · 1

2
x−1/2 =

e
√
x

2
√
x

�
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2. Do any two (2) of parts a–e. [8 = 2 × 4 each]

a. Compute lim
t→∞

sin(t) + cos(t)

t
.

b. Find the maximum value of f(x) = e−x
2

for −2 ≤ x ≤ 2.

c. Use the ε–δ definition of limits to verify that lim
x→−1

(3x+ 2) = −1.

d. Find the equation of the tangent line to y = ln(x) at x = 1.

e. Use the limit definition of the derivative to verify that
d

dx
x3 = 3x2.

Solutions. a. This is a job for the Squeeze Theorem. Since −1 ≤ sin(t) ≤ 1 and
−1 ≤ cos(t) ≤ 1 for all t, we have that −2 ≤ sin(t) + cos(t) ≤ 2 for all t, and hence that

−2

t
≤ sin(t) + cos(t)

t
≤ 2

t
for all t > 0. Since lim

t→∞

(
−2

t

)
= 0 = lim

t→∞

2

t
, it follows by the

Squeeze Theorem that lim
t→∞

sin(t) + cos(t)

t
= 0, too. �

b. We need to compare the values of f(x) at the endpoints of the given interval with its
values at any critical points inside the interval, and then select the largest among these.

First, f(−2) = e−(−2)
2

= e−4 =
1

e4
≈ 0.2776 and f(2) = e−2

2

= e−4 =
1

e4
≈ 0.2776.

Second, f ′(x) = d
dxe
−x2

= e−x
2 d
dx

(
−x2

)
= −2xe−x

2

. Since e−x
2

> 0 for all x, it
follows that f ′(x) = 0 exactly when x = 0. This critical point is inside the given interval

[−2, 2], and f(0) = e−0
2

= e0 = 1.

Finally, since 1 > 0.2776, it follows that the maximum value of f(x) = e−x
2

for x with
−2 ≤ x ≤ 2 is f(0) = 1. �

c. To verify that lim
x→−1

(3x+ 2) = −1 using the ε–δ definition of limits, we need to, for any

ε > 0, find a δ > 0 such that for all x with |x− (−1)| < δ, we also have |(3x+ 2)− (−1)| <
ε. As usual, we reverse-engineer the required δ from ε:

|(3x+ 2)− (−1)| < ε ⇐⇒ |3x+ 3| < ε ⇐⇒ 3 |x+ 1| < ε

⇐⇒ |x+ 1| < ε

3
⇐⇒ |x− (−1)| < ε

3

Note that each step above is completely reversible. It follows that for any ε > 0, if we

set δ =
ε

3
, then whenever |x− (−1)| < δ =

ε

3
, we get |(3x+ 2)− (−1)| < ε as well, as

required.
Thus lim

x→−1
(3x+ 2) = −1 by the ε–δ definition of limits. �

d. First, the tangent line to y = ln(x) at x = 1 passes through the point (1, ln(1)) = (1, 0).
Second, the slope of the tangent line to y = ln(x) at x = 1 is:

m =
dy

dx

∣∣∣∣
x=1

=
d

dx
ln(x)

∣∣∣∣
x=0

=
1

x

∣∣∣∣
x=1

=
1

1
= 1



The tangent line thus has slope 1, and hence an equation of the form y = x + b. To
determine b we use the fact that the tangent line passes through the point (1, 0), i.e.
0 = 1 + b. It follows that b = −1, and so the equation of the tangent line to y = ln(x) at
x = 1 is y = x− 1. �

e. The limit definition of the derivative states that f ′(x) = lim
h→0

f(x+ h)− f(x)

h
. We

apply this to f(x) = x3 below:

f ′(x) =
d

dx
x3 = lim

h→0

f(x+ h)− f(x)

h
= lim

h→0

(x+ h)3 − x3

h

= lim
h→0

x3 + 3x2h+ 3xh2 + h3 − x3

h
= lim

h→0

3x2h+ 3xh2 + h3

h

= lim
h→0

h
(
3x2 + 3xh+ h2

)
h

= lim
h→0

(
3x2 + 3xh+ h2

)
= 3x2 + 3x · 0 + 02 = 3x2 �
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3. Find the domain and any and all intercepts, intervals of increase and decrease, maxi-
mum and minimum points, intervals of curvature, and inflection points of the function
h(x) = xe−x, and sketch its graph based on this information. [10]

Solution. i. (Domain) Since xe−x makes sense no matter what real number x is plugged
into the expression, the domain of h(x) = xe−x is (−∞,∞), also known as R, or “all x in
R”, or just “all x”, or . . .

ii. (Intercepts) h(0) = 0e−0 = 0 · 1 = 0, so h(x) has y-intercept 0. Since e−x > 0 for all
x, h(x) = xe−x = 0 only when x = 0, so h(x) has 0 as its only x-intercept. Note that the
y-intercept aand x-intercept are the same point, namely the origin.

iii. (Asymptotes) [Note that these weren’t asked for, but just for drill . . . ] Since h(x) is
defined and continuous for all x, it has no vertical asymptotes. It remains to check for
horizontal asymptotes:

lim
x→−∞

xe−x =∞ since x→ −∞ and e−x → +∞ as x→ −∞

lim
x→+∞

xe−x = lim
x→+∞

x

ex
→ +∞
→ +∞ so we can apply l’Hôpital’s Rule

= lim
x→+∞

d
dxx
d
dxe

x
= lim

x→+∞

1

ex
→ 1
→ +∞ = 0+

Thus h(x) has a horizontal asymptote, namely y = 0, only in the positive direction.

iv. (Increase/decrease/maxima/minima) First, we compute the derivative of h(x).

h′(x) =
d

dx

(
xe−x

)
=

[
d

dx
x

]
e−x + x

[
d

dx
e−x

]
= 1e−x + xe−x

[
d

dx
(−x)

]
= e−x + xe−x(−1) = (1− x)e−x

Since e−x > 0 for all x, h′(x) is positive, negative, or zero, exactly as 1 − x is positive,
negative, or zero. Note that 1− x > 0 exactly when x < 1, 1− x < 0 exactly when x > 1,
and 1 − x = 0 exactly when x = 1. Thus h′(x) = (1 − x)e−x is positive exactly when
x < 1, negative exactly when x > 1, and zero exactly when x = 1. We relate this to the
behaviour of h(x) in the usual table:

x (−∞, 1) 1 (1,∞)
h′(x) + 0 −
h(x) ↑ max ↓

In particular, since h(x) is increasing before x = 1 and decreasing after x = 1, the sole
critical point, x = 1, is a maximum. Note that h(1) = 1e−1 = 1

e ≈ 0.3679.

v. (Curvature/inflection) First, we compute the second derivative of h(x).

h′′(x) =
d

dx
h′(x) =

d

dx
(1− x)e−x =

[
d

dx
(1− x)

]
e−x + (1− x)

[
d

dx
e−x

]
= [−1]e−x + (1− x)e−x

[
d

dx
(−x)

]
= −e−x + (1− x)e−x[−1]

= 1e−x − e−x + xe−x = (x− 2)e−x



Since e−x > 0 for all x, h′′(x) is positive, negative, or zero, exactly as x − 2 is positive,
negative, or zero. Note that x− 2 > 0 exactly when x > 2, x− 2 < 0 exactly when x < 2,
and x − 2 = 0 exactly when x = 2. Thus h′′(x) = (x − 2)e−x is positive exactly when
x > 2, negative exactly when x < 2, and zero exactly when x = 2. We relate this to the
behaviour of h(x) in the usual table:

x (−∞, 2) 2 (2,∞)
h′′(x) − 0 +
h(x) _ infl ^

Since h(x) is concave to the left of x = 2 and concave up to the right of x = 2, it follows
that x = 2 is an inflection point of h(x). Note that h(2) = 2e−2 = 2

e2 ≈ 0.2707.

vi. (Graph) It’s a cheat, but I had a computer draw the graph:

�

[Total = 30]


