Mathematics 1110H - Calculus I: Limits, Derivatives, and Integrals Trent University, Fall 2018

MATH 1110H Test

Friday, 2 November
Time: 11:00-11:50

Instructions

- Show all your work. Legibly, please! Simplify where you reasonably can.
- If you have a question, ask it!
- Use the back sides of all the pages for rough work or extra space.
- You may use a calculator and (all sides of) an aid sheet.

1. Compute $\frac{d y}{d x}$ for any four (4) of parts a-f. [12 $=4 \times 3$ each]
a. $y=\ln (\sec (x)+\tan (x))$
b. $(x+y)^{2}=x^{2}+y^{2}+1$
c. $y=\frac{x^{2}+1}{x+2}$
d. $y=\cos (2 x) \sin (2 x)$
e. $y=\sinh (x)+\cosh (x)$
f. $y=e^{\sqrt{x}}$
2. Do any two (2) of parts a-e. [$8=2 \times 4$ each]
a. Compute $\lim _{t \rightarrow \infty} \frac{\sin (t)+\cos (t)}{t}$.
b. Find the maximum value of $f(x)=e^{-x^{2}}$ for $-2 \leq x \leq 2$.
c. Use the $\varepsilon-\delta$ definition of limits to verify that $\lim _{x \rightarrow-1}(3 x+2)=-1$.
d. Find the equation of the tangent line to $y=\ln (x)$ at $x=1$.
e. Use the limit definition of the derivative to verify that $\frac{d}{d x} x^{3}=3 x^{2}$.
3. Find the domain and any and all intercepts, intervals of increase and decrease, maximum and minimum points, intervals of curvature, and inflection points of the function $h(x)=x e^{-x}$, and sketch its graph based on this information. [10]
