Mathematics 1110H – Calculus I: Limits, Derivatives, and Integrals TRENT UNIVERSITY, Fall 2018

MATH 1110H Test Friday, 2 November Time: 11:00–11:50 Space: SC 137

Instructions

- Show all your work. Legibly, please! Simplify where you reasonably can.
- If you have a question, ask it!
- Use the back sides of all the pages for rough work or extra space.
- You may use a calculator and (all sides of) an aid sheet.

1. Compute
$$\frac{dy}{dx}$$
 for any four (4) of parts **a**-**f**. $[12 = 4 \times 3 \text{ each}]$
a. $y = \ln(\sec(x) + \tan(x))$
b. $(x+y)^2 = x^2 + y^2 + 1$
c. $y = \frac{x^2 + 1}{x+2}$
d. $y = \cos(2x)\sin(2x)$
e. $y = \sinh(x) + \cosh(x)$
f. $y = e^{\sqrt{x}}$

- **2.** Do any two (2) of parts **a**–**e**. [8 = 2×4 each]
 - **a.** Compute $\lim_{t \to \infty} \frac{\sin(t) + \cos(t)}{t}$.
 - **b.** Find the maximum value of $f(x) = e^{-x^2}$ for $-2 \le x \le 2$.
 - c. Use the $\varepsilon \delta$ definition of limits to verify that $\lim_{x \to 1^+} (3x + 2) = -1$.
 - **d.** Find the equation of the tangent line to $y = \ln(x)$ at x = 1.
 - **e.** Use the limit definition of the derivative to verify that $\frac{d}{dx}x^3 = 3x^2$.
- 3. Find the domain and any and all intercepts, intervals of increase and decrease, maximum and minimum points, intervals of curvature, and inflection points of the function $h(x) = xe^{-x}$, and sketch its graph based on this information. [10]

|Total = 30|