Mathematics 1110H - Calculus I: Limits, Derivatives, and Integrals
 Trent University, Fall 2018
 Solutions to Assignment \#4 It's a cinch!?

Recall from class or the textbook that the basic hyperbolic functions are

$$
\sinh (x)=\frac{e^{x}-e^{-x}}{2} \quad \text { and } \quad \cosh (x)=\frac{e^{x}+e^{-x}}{2}
$$

We can define the other hyperbolic functions from these in the same way that we define the other trigonometric functions from $\sin (x)$ and $\cos (x)$. In particular,

$$
\tanh (x)=\frac{\sinh (x)}{\cosh (x)}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} \quad \text { and } \quad \operatorname{sech}(x)=\frac{1}{\cosh x}=\frac{2}{e^{x}+e^{-x}} .
$$

Like the trigonometric functions, the hyperbolic functions can be inverted, albeit sometimes only partially. The main task in this assignment is to invert $\tanh (x)$.

1. Plot $y=\tanh (x)$. [1]

Solution. It helps that Maple has $\tanh (x)$ built-in:

```
> plot(tanh(x), x = -10..10)
```


2. What are the domain and range of $\tanh (x)$? [1]

Solution. The plot in the solution to question 1 suggests that $\tanh (x)$ is defined for all x, but it's range is confined between $y=-1$ and $y=1$. This is, in fact, the case.

First, $\tanh (x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$ is defined for all x because e^{x} and e^{-x} are both defined and positive for all real numbers x, so the denominator $e^{x}+e^{-x}$ is never 0 . Thus the domain of $\tanh (x)$ is all of R, i.e. $(-\infty, \infty)$.

Second, since e^{x} and e^{-x} are always positive, $\left|e^{x}-e^{-x}\right|<e^{x}+e^{-x}$ for all x, from which it follows that $-1<\tanh (x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}<1$. This isn't quite enough to conclude
that the range is $(-1,1)$, though. For that we also need to combine the observations that $\tanh (x)$ is continuous and that:

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \tanh (x) & =\lim _{x \rightarrow-\infty} \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}=\lim _{x \rightarrow-\infty} \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} \cdot \frac{e^{x}}{e^{x}}=\lim _{x \rightarrow-\infty} \frac{\left(e^{x}\right)^{2}-1}{\left(e^{x}\right)^{2}+1} \\
& =\frac{0-1}{0+1}=-1 \quad\left[\text { since } e^{x} \rightarrow 0 \text { as } x \rightarrow-\infty\right] \\
\lim _{x \rightarrow \infty} \tanh (x) & =\lim _{x \rightarrow \infty} \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}=\lim _{x \rightarrow \infty} \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} \cdot \frac{e^{-x}}{e^{-x}}=\lim _{x \rightarrow \infty} \frac{1-\left(e^{-x}\right)^{2}}{1+\left(e^{-x}\right)^{2}} \\
& =\frac{1-0}{1+0}=1 \quad\left[\text { since } e^{-x} \rightarrow 0 \text { as } x \rightarrow \infty\right]
\end{aligned}
$$

Thus the range of $\tanh (x)$ is indeed $(-1,1)$, that is, all the real numbers y such that $-1<y<1$.
3. Find a formula for $\operatorname{arctanh}(x)$, the inverse function of $\tanh (x)$, by hand. What are the domain and range of $\operatorname{arctanh}(x)$? [4]
Solution. $y=\operatorname{arctanh}(x) \Longleftrightarrow x=\tanh (y)$ because they are inverse functions, so we will find a formula for $\operatorname{arctanh}(x)$ by solving the equation $x=\tanh (y)$ for y.

$$
\begin{aligned}
x=\tanh (y) & \Longleftrightarrow x=\frac{e^{y}-e^{-y}}{e^{y}+e^{-y}} \Longleftrightarrow x\left(e^{y}+e^{-y}\right)=e^{y}-e^{-} y \\
& \Longleftrightarrow x e^{y}+x e^{-y}-e^{y}+e^{-y}=0 \Longleftrightarrow:(x-1) e^{y}+(x+1) e^{-y}=0 \\
& \Longleftrightarrow(x-1) e^{y} e^{y}+(x+1) e^{-y} e^{y}=0 e^{y}=0 \Longleftrightarrow(x-1)\left(e^{y}\right)^{2}+(x+1)=0 \\
& \Longleftrightarrow\left(e^{y}\right)^{2}=-\frac{x+1}{x-1}=\frac{1+x}{1-x} \Longleftrightarrow e^{y}=\sqrt{\frac{1+x}{1-x}}=\left(\frac{1+x}{1-x}\right)^{1 / 2} \\
& \Longleftrightarrow y=\ln \left(\left(\frac{1+x}{1-x}\right)^{1 / 2}\right)=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)=\frac{\ln (1+x)-\ln (1-x)}{2}
\end{aligned}
$$

Thus $\operatorname{arctanh}(x)=\frac{\ln (1+x)-\ln (1-x)}{2}$. Note that when we took the square root above, we didn't have to deal with the negative square root because $e^{y}>0$ for all real y.

Since $\ln (t)$ is defined for all positive real numbers $t, \ln (1+x)$ is defined for all $x>-1$ and $\ln (1-x)$ is defined for all $x<1$. It follows that $\operatorname{arctanh}(x)=\frac{\ln (1+x)-\ln (1-x)}{2}$ is defined for all x with $-1<x<1$, i.e. the domain of $\operatorname{arctanh}(x)$ is the interval $(-1,1)$.

For the range, observe, using the substitutions $t=1+x$ and $s=1-x$, that:

$$
\begin{aligned}
\lim _{x \rightarrow-1^{+}} \operatorname{arctanh}(x) & =\lim _{x \rightarrow-1^{+}} \frac{\ln (1+x)-\ln (1-x)}{2}=\lim _{t \rightarrow 0^{+}} \frac{\ln (t)-\ln (2-t)}{2} \\
& =-\infty \quad \operatorname{since} \ln (t) \rightarrow-\infty \operatorname{and} \ln (2-t) \rightarrow \ln (2) \text { as } t \rightarrow 0^{+} \\
\lim _{x \rightarrow 1^{-}} \operatorname{arctanh}(x) & =\lim _{x \rightarrow 1^{-}} \frac{\ln (1+x)-\ln (1-x)}{2}=\lim _{s \rightarrow 0^{+}} \frac{\ln (2-s)-\ln (s)}{2} \\
& =+\infty \quad \text { since } \ln (2-s) \rightarrow \ln (2) \text { and } \ln (s) \rightarrow-\infty \text { as } s \rightarrow 0^{+}
\end{aligned}
$$

(Note that $-(-\infty)=+\infty$.) Since $\operatorname{arctanh}(x)$ is continuous where it is defined, being a composition of continuous functions, it follows that the range of $\operatorname{arctanh}(x)$ is all of \mathbb{R}, i.e. the range of $\operatorname{arctanh}(x)$ is the interval $(-\infty, \infty)$.
4. Use Maple to find a formula for $\operatorname{arctanh}(x)$. [1]

Solution. Telling Maple to solve ($\mathrm{x}=\tanh (\mathrm{y}), \mathrm{y}$) gave something that was hard to interpret - hate it when Root_Of stuff shows up in an answer! - so the hard way it was:

```
> solve(x = (exp(y)-exp(-y))/(exp(y)+exp(-y)), y)
```

$$
\ln \left(\frac{\sqrt{-(x-1)(1+x)}}{x-1}\right), \ln \left(-\frac{\sqrt{-(x-1)(1+x)}}{x-1}\right)
$$

A little algebra will show that one of these is the answer obtained in the solution to 3 . [What about the other one?]
5. Find the derivative of $\operatorname{arctanh}(x)$ by hand, and then by using Maple. How does it compare to the derivative of $\arctan (x)$? [3]
Solution. First, with Maple, taking advantage of the fact that it knows $\operatorname{arctanh}(x)$ so as not to have to type in the formula obtained in 3 and 4 :
$>\operatorname{diff}(\operatorname{arctanh}(x), x)$

$$
\frac{1}{1-x^{2}}
$$

Second, by hand:

$$
\begin{aligned}
\frac{d}{d x} \operatorname{arctanh}(x) & =\frac{d}{d x}\left(\frac{\ln (1+x)-\ln (1-x)}{2}\right)=\frac{1}{2}\left(\frac{d}{d x} \ln (1+x)-\frac{d}{d x} \ln (1-x)\right) \\
& =\frac{1}{2}\left(\frac{1}{1+x} \cdot \frac{d}{d x}(1+x)-\frac{1}{1-x} \cdot \frac{d}{d x}(1-x)\right) \\
& =\frac{1}{2}\left(\frac{1}{1+x} \cdot 1-\frac{1}{1-x} \cdot(-1)\right)=\frac{1}{2}\left(\frac{1}{1+x}+\frac{1}{1-x}\right) \\
& =\frac{1}{2} \cdot \frac{1 \cdot(1-x)+1 \cdot(1+x)}{(1+x)(1-x)}=\frac{1}{2} \cdot \frac{2}{1-x^{2}}=\frac{1}{1-x^{2}}
\end{aligned}
$$

