Mathematics 1110H - Calculus I: Limits, derivatives, and Integrals Trent University, Fall 2018
 The Final Gountdown Examination

Space-time: Gym - 11:00-14:00.
Brought to you by Стефан Біланюк.
Instructions: Do parts \square and Δ, and, if you wish, part O. Please show all your work and justify all your answers. If in doubt about something, ask!
Aids: Any calculator; (all sides of) one aid sheet; one (1) brain (no neuron limit).
Part \square. Do all four (4) of 7-4. [Subtotal $=74]$
7. Compute $\frac{d y}{d x}$ as best you can in any four (4) of $\mathbf{f}-\mathbf{a}$. $[20=4 \times 5$ each $]$
a. $y=x^{\pi}+x^{e}+2018$
b. $y=\tan \left(e^{2 x}\right)$
c. $y=\frac{x-1}{x+1}$
d. $y=\int_{0}^{\sqrt{x}} \cos (t) d t$
e. $\ln (y-x)=0$
f. $y=(x-1) e^{x}$
6. Evaluate any four (4) of the integrals $\mathbf{f}-\mathbf{a}$. [$20=4 \times 5$ each]
a. $\int_{0}^{\pi / 2} \frac{\cos (u)}{1+\sin ^{2}(u)} d u$
b. $\int t \cosh (t) d t$
c. $\int \frac{e^{\sqrt{y}}}{\sqrt{y}} d y$
d. $\int_{0}^{\pi / 4} 2 \tan (z) \sec ^{2}(z) d z$
e. $\int_{1}^{2} \frac{w^{2}-w-2}{w+1} d w$
f. $\int e^{x} \cos (x) d x$
5. Do any four (4) of a-f. [20 $=4 \times 5$ each]
f. Find the equation of the tangent line to $y=\tan (x)$ at $x=0$.
e. Use the $\varepsilon-\delta$ definition of limits to verify that $\lim _{x \rightarrow-1}(2 x+3)=1$.
d. Use the limit definition of the derivative to verify that $\frac{d}{d x} x^{3}=3 x^{2}$ for all x.
c. Find the minimum value of $f(x)=x^{3}-x^{2}+x$ on the interval $[0,2]$.
b. Compute $\lim _{x \rightarrow \infty} \frac{e^{x}}{e^{2 x}+1}$.
a. Find the area of the the region between $y=\cos (x)$ and $y=\sin (x)$ for $0 \leq x \leq \frac{\pi}{2}$.
4. Find the domain and any and all intercepts, vertical and horizontal asymptotes, intervals of increase, decrease and concavity, and maximum, minimum, and inflection points of $f(x)=\frac{x^{2}}{x^{2}+1}$, and sketch its graph. [14]

Part \triangle. Do any two (2) of $\mathbf{3}-\mathbf{1}$. [Subtotal $=26]$

3. Jed Aye, who is $2 m$ tall, explores a $3 m$ tall tunnel that runs horizontally, walking on the ceiling to avoid traps and carrying a lamp. On spotting monsters farther down the tunnel, Jed drops the lamp in shock and awe and begins running away from the monsters, still on the ceiling, at $10 \mathrm{~m} / \mathrm{s}$. At the instant that Jed is a horizontal distance of 10 m away from where the still-functioning lamp landed on the floor, how is the length of Jed's shadow on the ceiling changing with time? [13]
2. What is the maximum area of a rectangle which has each side parallel to one of the axes and all of its corners on the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$? [13]

1. Sketch the finite region between $y=f(x)$ and $y=g(x)$ and find its area for:
b. $f(x)=\sin (x)$ and $g(x)=\frac{2 x}{\pi}$. [6]
a. $f(x)=\sin ^{2}(x)$ and $g(x)=\frac{4 x^{2}}{\pi^{2}} .[7]$
$[$ Total $=100]$

Part O. Bonus problems! If you feel like it and have the time, do one or both of these.
๑. The longest straight line that fits inside a perfectly circular road of constant width is 100 m long. What is the area covered by the road? [1]
\odot. Write a haiku touching on calculus or mathematics in general. [1]

What is a haiku?

seventeen in three:
five and seven and five of syllables in lines

Enjoy the break!

