
Mathematics 1110H – Calculus I: Limits, derivatives, and Integrals
Trent University, Fall 2018

The Solutions to the Final Countdown Examination

Space-time: Gym – 11:00-14:00. Brought to you by Stefan B�lan�k.

Instructions: Do parts ��� and 444, and, if you wish, part ©©©. Please show all your work
and justify all your answers. If in doubt about something, ask!

Aids: Any calculator; (all sides of) one aid sheet; one (1) brain (no neuron limit).

Part ���. Do all four (4) of 7–4. [Subtotal = 74]

7. Compute
dy

dx
as best you can in any four (4) of f–a. [20 = 4 × 5 each]

f. y = (x− 1)ex e. ln(y − x) = 0 d. y =

∫ √x
0

cos(t) dt

c. y =
x− 1

x+ 1
b. y = tan

(
e2x
)

a. y = xπ + xe + 2018

Solutions. f. This is job for the Product Rule:

dy

dx
=

d

dx
(x− 1)ex =

[
d

dx
(x− 1)

]
ex + (x− 1)

[
d

dx
ex
]

= 1ex + (x− 1)ex = xex �

e. ln(y − x) = 0 ⇒ y − x = 1 ⇒ 7 = x+ 1 ⇒ dy

dx
=

d

dx
(x+ 1) = 1 �

d. The Fundamental Theorem of Calculus and the Chain Rule:

dy

dx
=

d

dx

∫ √x
0

cos(t) dt = cos
(√
x
)
· d
dx

√
x = cos

(√
x
)
· 1

2
√
x
�

c. Quotient Rule:

dy

dx
=

d

dx

(
x− 1

x+ 1

)
=

[
d
dx (x− 1)

]
(x+ 1)− (x− 1)

(
d
dx (x+ 1)

]
(x+ 1)2

=
1(x+ 1)− (x− 1)1

(x+ 1)2
=

2

(x+ 1)2
�

b. Chain Rule all the way:

dy

dx
=

d

dx
tan

(
e2x
)

= sec2
(
e2x
)
· d
dx
e2x = sec2

(
e2x
)
· e2x · d

dx
(2x)

= 2e2x sec2
(
e2x
)
�

a. Power Rule:
dy

dx
=

d

dx
(xπ + xe + 2018) = πxπ−1 + exe−1 �
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6. Evaluate any four (4) of the integrals f–a. [20 = 4 × 5 each]

f.

∫
ex cos(x) dx e.

∫ 2

1

w2 − w − 2

w + 1
dw d.

∫ π/4

0

2 tan(z) sec2(z) dz

c.

∫
e
√
y

√
y
dy b.

∫
t cosh(t) dt a.

∫ π/2

0

cos(u)

1 + sin2(u)
du

Solutions. f. We will use integration by parts twice, followed by a bit of algebra. The
first use of parts will have u = ex and v′ = cos(x), so u′ = ex and v = sin(x); the second
will have s = ex and t′ = sin(x), so s′ = ex and t = − cos(x).∫

ex cos(x) dx = ex sin(x)−
∫
ex sin(x) dx

= ex sin(x)−
[
ex (− cos(x))−

∫
ex (− cos(x)) dx

]
= ex sin(x) + ex cos(x)−

∫
ex cos(x) dx

We now can solve for our integral. By bringing the copy of the integral on the right-hand

side to the left-hand side, we have 2

∫
ex cos(x) dx = ex sin(x) + ex cos(x). It follows that∫

ex cos(x) dx =
1

2
[ex sin(x) + ex cos(x)] + C. �

e. A little algebra, followed by the Power Rule:∫ 2

1

w2 − w − 2

w + 1
dw =

∫ 2

1

(w − 2)(w + 1)

w + 1
dw =

∫ 2

1

(w − 2) dw =

(
w2

2
− 2w

)∣∣∣∣2
1

=

[
22

2
− 2 · 2

]
−
[

12

2
− 2 · 1

]
= [2− 4]−

[
1

2
− 2

]
= [−2]−

[
−3

2

]
= −1

2
�

d. We will use the substitution u = tan(z), so
du

dz
= sec2(z) and thus du = sec2(z) dz, and

change the limits as we go along:
x 0 π/4
u 0 1

.∫ π/4

0

2 tan(z) sec2(z) dz =

∫ 1

0

2u du = u2
∣∣1
0

= 12 − 02 = 1 �

c. We will use the substitution w =
√
y, so

dw

dy
=

1

2
√
y

, giving dw =
1

2
√
y
dy and thus

2 dw =
1
√
y
dy. ∫

e
√
y

√
y
dy =

∫
ew · 2 dw = 2ew + C = 2e

√
y + C �
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b. We will use integration by parts, with u = t and v′ = cosh(t), so u′ = 1 and v = sinh(t).∫
t cosh(t) dt = t sinh(t)−

∫
1 sinh(t) dt = t sinh(t)− cosh(t) + C �

a. We will use the substitution w = sin(u), so
dw

du
= cos(u) and hence dw = cos(u) du,

and change the limits as we go along,
u 0 π/2
w 0 1

.

∫ π/2

0

cos(u)

1 + sin2(u)
du =

∫ 1

0

1

1 + w2
dw = arctan(w)|10

= arctan(1)− arctan(0) =
π

4
− 0 =

π

4
�

5. Do any four (4) of a–f. [20 = 4 × 5 each]

f. Find the equation of the tangent line to y = tan(x) at x = 0.

e. Use the ε–δ definition of limits to verify that lim
x→−1

(2x+ 3) = 1.

d. Use the limit definition of the derivative to verify that
d

dx
x3 = 3x2 for all x.

c. Find the minimum value of f(x) = x3 − x2 + x on the interval [0, 2].

b. Compute lim
x→∞

ex

e2x + 1
.

a. Find the area of the the region between y = cos(x) and y = sin(x) for 0 ≤ x ≤ π

2
.

Solutions. f. The slope of the tangent line is:

m =
dy

dx

∣∣∣∣
x=0

=
d

dx
tan(x)

∣∣∣∣
x=0

= sec2(x)
∣∣
x=0

= sec2(0) = 12 = 1

Since 0 = tan(0) = m · 0 + b = 1 · 0 + b = b, it follows that the equation of the tangent line
to y = tan(x) at x = 0 is y = 1x+ 0 = x. �

e. We need to check that for every ε > 0 there is a δ > 0 such that every x with
|x− (−1)| < δ yields |(2x+ 3)− 1| < ε. As usual, we reverse-engineer the δ from the ε:

|(2x+ 3)− 1| < ε ⇔ |2x+ 2| < ε ⇔ 2|x+ 1| < ε ⇔ |x− (−1)| < ε

2

Since every step above was reversible, if we are given a ε > 0, setting δ = ε
2 will ensure

that whenever |x− (−1)| < δ, we get |(2x+ 3)− 1| < ε, as required.

It follows that lim
x→−1

(2x+ 3) = 1 by the ε–δ definition of limits. �
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d. The limit definition of the derivative of f(x) is f ′(x) = lim
h→0

f(x+ h)− f(x)

h
. We apply

this to f(x) = x3 and evaluate the limit:

d

dx
x3 = lim

h→0

(x+ h)3 − x3

h
= lim
h→0

x3 + 3x2h+ 3xh2 + h3 − x3

h

= lim
h→0

3x2h+ 3xh2 + h3

h
= lim
h→0

(
3x2 + 3xh+ h2

)
= 3x2 + 3x · 0 + 02 = 3x2 �

c. We need to find any critical points of f(x) = x3 − x2 + x in the interval [0, 2] and
compare the value(s) of f(x) at any such points with its values at the endpoints of the
interval.

First, f ′(x) =
d

dx

(
x3 − x2 + x

)
= 3x2 − 2x+ 1. According to the quadratic formula,

this equals 0 when x =
−(−2)±

√
(−2)2 − 4 · 3 · 1

2
=

2±
√

4− 12

2
=

2±
√
−8

2
. Since

√
−8 is not a real number, f(x) has no critical points for us to check.

Second, we still have to check the values of f(x) on the endpoints of the interval [0, 2]:
f(0) = 03 − 02 + 0 = 0 and f(2) = 23 − 22 + 2 = 8− 4 + 2 = 6. Since 0 < 6, it follows that
the minimum value of f(x) = x3 − x2 + x on the interval [0, 2] is f(0) = 0. �

b. One could do this with l’Hôpital’s Rule and some algebra, but it’s faster with just some

algebra: lim
x→∞

ex

e2x + 1
= lim
x→∞

ex

e2x + 1
· e
−x

e−x
= lim
x→∞

1

ex + e−x
→ 1
→∞+ 0

= 0. �

a. Note that y = cos(x) and y = sin(x) intersect once for some 0 ≤ x ≤ π

2
, namely at

x =
π

4
. Since sin(0) = 0 < 1 = cos(0) and sin

(
π
2

)
= 1 > 0 − cos

(
π
2

)
, it follows that

y = cos(x) is above y = sin(x) for 0 ≤ x <
π

4
and below it for

π

4
< x ≤ π

2
. The area of

the region between the curves is therefore given by:∫ π/2

0

(upper− lower) dx =

∫ π/4

0

(cos(x)− sin(x)) dx+

∫ π/2

π/4

(sin(x)− cos(x)) dx

= [sin(x)− (− cos(x))]|π/40 + [(− cos(x))− sin(x)]|π/2π/4

= [sin(x) + cos(x)]|π/40 − [sin(x) + cos(x)]|π/2π/4

=
[
sin
(π

4

)
+ cos

(π
4

)]
− [sin(0) + cos(0)]

−
([

sin
(π

2

)
+ cos

(π
2

)]
−
[
sin
(π

4

)
+ cos

(π
4

)])
=

[
1√
2

+
1√
2

]
− [0 + 1]−

(
[1 + 0]−

[
1√
2

+
1√
2

])
=

2√
2
− 1− 1 +

2√
2

=
4√
2
− 2 = 2

√
2− 2 = 2

(√
2− 1

)
�
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4. Find the domain and any and all intercepts, vertical and horizontal asymptotes, in-
tervals of increase, decrease and concavity, and maximum, minimum, and inflection

points of f(x) =
x2

x2 + 1
, and sketch its graph. [14]

Solution. We run through the checklist:

i. (Domain) Both x2 and 1 + x2 are defined for all x and, as 1 + x2 ≥ 1 > 0 for all x,

f(x) =
x2

x2 + 1
is also defined for all x. Thus the domain of f(x) is R = (−∞,∞).

ii. (Intercepts) f(0) =
02

02 + 1
= 0 so f(x) has y-intercept 0. Moreover, =

x2

x2 + 1
= 0

exactly when x2 = 0, which is to say exactly when x = 0, so x = 0 also gives the only
x-intercept.

iii. (Asymptotes) Since =
x2

x2 + 1
is a rational function, it is continuous wherever it is

defined and, as noted above, it is defined for all x ∈ R. As it is continuous for all x, it
follows that it has no vertical asymptotes. It remains to check for horizontal asymptotes:

lim
x→−∞

x2

x2 + 1
= lim
x→−∞

x2

x2 + 1
· 1/x2

1/x2
= lim
x→−∞

1

1 + 1
x2

→ 1
→ 1 + 0

=
1

1 + 0
= 1

lim
x→+∞

x2

x2 + 1
= lim
x→+∞

x2

x2 + 1
· 1/x2

1/x2
= lim
x→+∞

1

1 + 1
x2

→ 1
→ 1 + 0

=
1

1 + 0
= 1

Thus f(x) has a horizontal asymptote of y = 1 in both directions.

iv. (Increase/decrease/max/min) We’ll need the derivative:

f ′(x) =
d

dx

(
x2

x2 + 1

)
=

[
d
dxx

2
] (
x2 + 1

)
− x2

[
d
dx

(
x2 + 1

)]
(x2 + 1)

2

=
2x
(
x2 + 1

)
− x2 · 2x

(x2 + 1)
2 =

2x3 + 2x− 2x3

(x2 + 1)
2 =

2x

(x2 + 1)
2

Since
(
x2 + 1

)2
is positive for all x, the derivative will be positive, negative, or zero exactly

when the numerator 2x is positive, negative, or zero. Thus f(x) is increasing when f ′(x) >
0, i.e. when x ∈ (0,∞), and decreasing when f ′(x) < 0, i.e. when x ∈ (−∞, 0); it follows
that the critical point at x = 0 is a minimum. (Note that f(0) = 0, as noted in part ii
above.) We summarize all this in a table:

x (−∞, 0) 0 (0,∞)
f ′(x) − 0 +
f(x) ↓ min ↑
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v. (Curvature/inflection) This time we’ll need the second derivative:

f ′′(x) =
d

dx
f ′(x) =

d

dx

(
2x

(x2 + 1)
2

)
=

[
d
dx2x

] (
x2 + 1

)2 − 2x
[
d
dx

(
x2 + 1

)2][
(x2 + 1)

2
]2

=
2
(
x2 + 1

)2 − 2x · 2
(
x2 + 1

) [
d
dx

(
x2 + 1

)]
(x2 + 1)

4 =
2
(
x2 + 1

)
− 4x · 2x

(x2 + 1)
3

=
2x2 + 2− 8x2

(x2 + 1)
3 =

2− 6x2

(x2 + 1)
3

Since
(
x2 + 1

)3
is positive for all x (because x2 + 1 is), f ′′(x) is positive, negative, or zero

exactly as the numerator 2 − 6x2 is positive, negative, or zero. 2 − 6x2 = 2
(
1− 3x2

)
is positive exactly when 1 − 3x2 > 0, i.e. when − 1√

3
< x <

1√
3

, and negative when

1 − 3x2 < 0. i.e. when x < − 1√
3

or x > 1√
3
; it follows that f(x) has inflection points at

x = − 1√
3

and x = 1√
3
. We summarize this in another table:

x
(
−∞, 1√

3

)
− 1√

3

(
− 1√

3
, 1√

3

)
1√
3

(
1√
3
,∞
)

f ′′(x) − 0 + 0 −
f(x) _ inflection ^ inflection _

vi. (Graph) Cheating a bit by having a computer do the job . . .

�

More on the next page!
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Part 444. Do any two (2) of 3–1. [Subtotal = 26]

3. Jed Aye, who is 2 m tall, explores a 3 m tall tunnel that runs horizontally, walking
on the ceiling to avoid traps and carrying a lamp. On spotting monsters farther down
the tunnel, Jed drops the lamp in shock and awe and begins running away from the
monsters, still on the ceiling, at 10 m/s. At the instant that Jed is a horizontal
distance of 10 m away from where the still-functioning lamp landed on the floor, how
is the length of Jed’s shadow on the ceiling changing with time? [13]

Solution. Suppose we denote the horizontal distance between Jed and the lamp by h and

the length of Jed’s shadow on the ceiling by s. We wish to determine
ds

dt
at the instant that

h = 10 m, given that
dh

dt
= 10 m/s. To do so we need to sort out the relationship between

h and s. Note that the 2 m tall Jed and Jed’s shadow are the short sides of a right triangle.
This triangle is similar to the larger right triangle whose short side corresponding to Jed
is the 3 m perpendicular distance from the fallen lamp to the ceiling and whose short side
corresponding to Jed’s shadow consists of the horizontal distance along the ceiling between
the lamp and Jed, together with Jed’s shadow. Since the triangles are similar (since each
has a right angle and they share a common angle at the tip of Jed’s shadow), corresponding

sides have the same ratios. This tells us that
h+ s

3
=
s

2
. We’ll use this relation to solve

for s in terms of h:

h+ s

3
=
s

2
⇒ h

3
=
s

2
− s

3
=
s

6
⇒ s = 6 · h

3
= 2h

It follows that, irrespective of whether h = 10 m or not,

ds

dt
=

d

dt
(2h) = 2

dh

dt
= 2 · 10 = 20 m/s . �
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2. What is the maximum area of a rectangle which has each side parallel to one of the

axes and all of its corners on the ellipse
x2

9
+
y2

4
= 1? [13]

Solution. Suppose the upper right corner of the rectangle is at (x, y), as in the diagram
below.

Since the ellipse is symmetric about the origin, we have that 0 ≤ x ≤ 3 and the other cor-
ners of the rectangle, going around counterclockwise from (x, y), are at (−x, y), (−x,−y),
and (x,−y). It is not hard to see that this rectangle has width 2x and height 2y, so it

has area A = 4xy. Since the ellipse has equation
x2

9
+
y2

4
= 1 and (x, y) is on the ellipse,

we also have y = 2

√
1− x2

9
. It follows that we need to maximize A(x) = 8x

√
1− x2

9
for

0 ≤ x ≤ 3.
First, note that A(0) = A(3) = 0. We stlll need to find the critical points of A(x) in

[0, 3] and check what A(x) is at such.

A′(x) =
d

dx

(
8x

√
1− x2

9

)
=

[
d

dx
(8x)

]√
1− x2

9
+ 8x

[
d

dx

√
1− x2

9

]

= 8

√
1− x2

9
+ 8x · 1

2
√

1− x2

9

· d
dx

(
1− x2

9

)

= 8

√
1− x2

9
+

8x

2
√

1− x2

9

·
(
−2x

9

)
= 8

√
1− x2

9
− 8x2

9
√

1− x2

9

=

8 · 9
(√

1− x2

9

)2

− 8x2

9
√

1− x2

9

=
72
(

1− x2

9

)
− 8x2

9
√

1− x2

9

=
72− 8x2 − 8x2

9
√

1− x2

9

=
72− 16x2

9
√

1− x2

9

=
8
(
9− 2x2

)
9
√

1− x2

9

= 0 ⇔ 9− 2x2 = 0 ⇔ x = ± 3√
2

The critical point x = − 3√
2
< 0 so it is obviously not in the interval [0, 3], but x =

3√
2
≈

2.1213 is. Since A
(

3√
2

)
= 8 · 3√

2
·

√
1− (3/

√
2)

2

9 = 12
√

2 ·
√

1− 1
2 = 12

√
2 · 1√

2
= 12

is greater than A(0) = A(3) = 0, the maximum area of a rectangle which has each side

parallel to one of the axes and all of its corners on the ellipse
x2

9
+
y2

4
= 1 is 12. �
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1. Sketch the finite region between y = f(x) and y = g(x) and find its area for:

b. f(x) = sin(x) and g(x) =
2x

π
. [6] a. f(x) = sin2(x) and g(x) =

4x2

π2
. [7]

Solutions. b. To sort out the region, we first have to figure out where f(x) = sin(x) and

g(x) =
2x

π
intersect. It’s easy to see that f(0) = sin(0) = 0 and g(0) =

2 · 0
π

= 0, so the

graphs of the two functions cross at the origin. The
2

π
in the definition of g(x) is a clue

to where else the curves might intersect: g
(π

2

)
=

2

π
· π

2
= 1 and, not all coincidentally,

f
(
−π

2

)
= sin

(π
2

)
= 1; similarly, g

(
−π

2

)
=

2

π
·
(
−π

2

)
= −1 and f

(
−π

2

)
= sin

(
−π

2

)
=

1. A quick peek at the graph

shows that these are the only points of intersection and indicates which of f(x) and g(x) is
above the other between adjacent points of intersection. This can be tested by evaluating
the functions between the points of intersection. One could also use the fact that the
slope at x = 0 of g(x) is 2

π , which is less than the slope of f(x) at x = 0, namely
f ′(0) = cos(0) = 1. Note that the two parts of the region are symmetric about the
origin – this follows from the fact that both functions are odd, i.e. f(−x) = −f(x) and
g(−x) = −g(x) for all x – so each part has half the area, which fact saves us a bit of effort
when integrating.

It follows that the area of the finite region between the two curves is:

2

∫ π/2

0

[f(x)− g(x)] dx = 2

∫ π/2

0

[
sin(x)− 2x

π

]
dx = 2

[
− cos(x)− 2

π
· x

2

2

]∣∣∣∣π/2
0

= 2

[
− cos

(π
2

)
− 1

π

(π
2

)2]
− 2

[
− cos (0)− 1

π
02
]

= 2
[
−0− π

4

]
− 2 [−1− 0] = −π

2
+ 2 = 2− π

2
�
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a. The f(x) and g(x) of this part are the squares of their counterparts in part b, so the x
values that gave intersection pointsin part b still give intersection points in this part. A
quick peek at the graph

again suggests these are the only points of intersection, and that the region comes in two
parts that are symmetric about the y-axis. This last also follows from the fact that in this
case both functions are even, i.e. f(−x) = f(x) and g(−x) = g(x) for all x. Again, one
can determine which function is above the other by testing points between the intersection
points.

It follows that the area of the finite region between the two curves is:

2

∫ π/2

0

[f(x)− g(x)] dx = 2

∫ π/2

0

[
sin2(x)− 4x2

π2

]
dx

= 2

∫ π/2

0

[(
1

2
− 1

2
cos(2x)

)
− 4x2

π2

]
dx

= 2

[
x

2
− 1

2
· 1

2
sin(2x)− 4

π2
· x

3

3

]∣∣∣∣π/2
0

=

[
x− 1

2
sin(2x)− 8

π2
· x

3

3

]∣∣∣∣π/2
0

=

[
π

2
− 1

2
sin
(

2
π

2

)
− 8

3π2

(π
2

)3]
−
[
0− 1

2
sin(2 · 0)− 8 · 02

π2

]
=

[
π

2
− 1

2
sin(π)− π

3

]
−
[
0− 1

2
· 0− 0

]
=
π

2
− 1

2
· 0− π

3
=
π

6
�

[Total = 100]

10



Part ©©©. Bonus problems! If you feel like it and have the time, do one or both of these.

}}}. The longest straight line that fits inside a perfectly circular road of constant width is
100 m long. What is the area covered by the road? [1]

Solution. The area covered by the road is 2500π m2. You get to figure out why! :-) �

���. Write a haiku touching on calculus or mathematics in general. [1]

What is a haiku?

seventeen in three:
five and seven and five of

syllables in lines

Solution. You’re on your own here! �

Enjoy the break!
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