Mathematics 1110H - Calculus I: Limits, Derivatives, and Integrals
 Trent University, Fall 2018

Assignment \#5
Maple Differentiates
Due on Friday, 19 October.

The focus of this assignment is to play a little with what Maple can do with taking and manipulating derivatives.

1. Use Maple to find all the points where the graph of $p(x)=5 x^{5}+4 x^{4}+3 x^{3}+2 x^{2}+x$ has slope 0 , without taking the derivative of $p(x)$ by hand. [2]
2. Use Maple to help determine which of the points from 1 are maxima (peaks), minima (valleys), or neither of the graph of $p(x)$. [2]

A differential equation is an equation in which the derivative(s) of some unknown function(s) appear. The usual task is to find the unknown functions that satisfy the equation; this normally requires some additional information about specific values of the function(s) and/or the derivative(s) at specific points in order to fully pin down the unknowns.

Consider the differential equation $\frac{d y}{d x}=e^{x+y}$, with initial condition $y(0)=0$ (i.e. with $y=0$ when $x=0$). A solution to this differential equation with the given initial condition would be a function $y=f(x)$ that satisfies both the equation, i.e. such that $f^{\prime}(x)=e^{x+f(x)}$, and the given initial condition, i.e. such that $f(0)=0$. Maple has ways of finding such solutions ...
3. Use Maple to find (all the) solution(s) of this differential equation with the given initial condition. Plot your solution(s) and figure out the(ir) domain and range. [3]
4. Use Maple to find (all the) solution(s) of this differential equation with the initial condition $y(0)=1$ instead. Plot your solution(s) and figure out the(ir) domain and range. [3]

