Mathematics 1110H - Calculus I: Limits, Derivatives, and Integrals
 Trent University, Fall 2018

Assignment \#4

It's a cinch!?
Due on Friday, 12 October.
Recall from class or the textbook that the basic hyperbolic functions are

$$
\sinh (x)=\frac{e^{x}-e^{-x}}{2} \quad \text { and } \quad \cosh (x)=\frac{e^{x}+e^{-x}}{2}
$$

We can define the other hyperbolic functions from these in the same way that we define the other trigonometric functions from $\sin (x)$ and $\cos (x)$. In particular,

$$
\tanh (x)=\frac{\sinh (x)}{\cosh (x)}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} \quad \text { and } \quad \operatorname{sech}(x)=\frac{1}{\cosh x}=\frac{2}{e^{x}+e^{-x}} .
$$

Like the trigonometric functions, the hyperbolic functions can be inverted, albeit sometimes only partially. The main task in this assignment is to invert $\tanh (x)$.

1. Plot $y=\tanh (x)$. [1]
2. What are the domain and range of $\tanh (x)$? [1]
3. Find a formula for $\operatorname{arctanh}(x)$, the inverse function of $\tanh (x)$, by hand. What are the domain and range of $\operatorname{arctanh}(x)$? [4]
4. Use Maple to find a formula for $\operatorname{arctanh}(x)$. [1]
5. Find the derivative of $\operatorname{arctanh}(x)$ by hand, and then by using Maple. How does it compare to the derivative of $\arctan (x)$? [3]
