Trent University

 MATH 1101Y Test \#1

 MATH 1101Y Test \#1}

Monday, 11 November, 2013
Time: 50 minutes

Name:

Student Number:

Question Mark

Total — / 40

Instructions

- Show all your work. Legibly, please!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator and an aid sheet.

1. Find $\frac{d y}{d x}$ as best you can in any three (3) of a-e. $[12=3 \times 4$ each]
a. $y=x \tan (x)$
b. $y=\frac{e^{x}}{x}$
c. $1=\ln (x y)$
d. $y=\sin ^{3}(x+41)$
e. $y=\frac{1}{1+\sqrt{x}}$

Solutions. a. Product Rule:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}(x \tan (x))=\left(\frac{d}{d x} x\right) \tan (x)+x\left(\frac{d}{d x} \tan (x)\right) \\
& =1 \cdot \tan (x)+x \cdot \sec ^{2}(x)=\tan (x)+x \sec ^{2}(x)
\end{aligned}
$$

b. Quotient Rule:

$$
\frac{d y}{d x}=\frac{d}{d x}\left(\frac{e^{x}}{x}\right)=\frac{\left(\frac{d}{d x} e^{x}\right) x-e^{x}\left(\frac{d}{d x} x\right)}{x^{2}}=\frac{e^{x} \cdot x-e^{x} \cdot 1}{x^{2}}=\frac{(x-1) e^{x}}{x^{2}}
$$

c. Method i. Solve for y first: $\ln (x y)=1 \quad \Longrightarrow \quad x y=e^{\ln (x y)}=e^{1}=e \quad \Longrightarrow \quad y=\frac{e}{x}$. Then, using the Power Rule: $\frac{d y}{d x}=\frac{d}{d x}\left(\frac{e}{x}\right)=\frac{d}{d x} e x^{-1}=e(-1) x^{-2}=-\frac{e}{x^{2}}$.
Method ii. Implicit differentiation using the Chain and Product Rules:

$$
\begin{aligned}
& 0=\frac{d}{d x} 1=\frac{d}{d x} \ln (x y)=\frac{1}{x y} \cdot \frac{d}{d x}(x y)=\frac{1}{x y}\left[\left(\frac{d x}{d x}\right) y+x\left(\frac{d y}{d x}\right)\right]=\frac{1}{x y}\left[1 \cdot y+x \cdot \frac{d y}{d x}\right] \\
& \Longrightarrow y+x \frac{d y}{d x}=x y \cdot 0=0 \quad \Longrightarrow \quad \frac{d y}{d x}=-\frac{y}{x}
\end{aligned}
$$

d. Power and Chain Rules:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x} \sin ^{3}(x+41)=3 \sin ^{2}(x+41) \cdot \frac{d}{d x} \sin (x+41) \\
& =3 \sin ^{2}(x+41) \cdot \cos (x+41) \cdot \frac{d}{d x}(x+41) \\
& =3 \sin ^{2}(x+41) \cos (x+41) \cdot(1+0)=3 \sin ^{2}(x+41) \cos (x+41)
\end{aligned}
$$

e. Method i. Power and Chain Rules:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(\frac{1}{1+\sqrt{x}}\right)=\frac{d}{d x}(1+\sqrt{x})^{-1}=(-1)(1+\sqrt{x})^{-2} \cdot \frac{d}{d x}(1+\sqrt{x}) \\
& =-(1+\sqrt{x})^{-2} \cdot \frac{d}{d x}\left(1+x^{1 / 2}\right)=-(1+\sqrt{x})^{-2} \cdot \frac{1}{2} x^{-1 / 2}=\frac{-1}{2 \sqrt{x}(1+\sqrt{x})^{2}}
\end{aligned}
$$

Method ii. Quotient and Power Rules:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(\frac{1}{1+\sqrt{x}}\right)=\frac{\left(\frac{d}{d x} 1\right) \cdot(1+\sqrt{x})-1 \cdot \frac{d}{d x}(1+\sqrt{x})}{(1+\sqrt{x})^{2}} \\
& =\frac{0 \cdot(1+\sqrt{x})-1 \cdot\left(0+\frac{1}{2 \sqrt{x}}\right)}{(1+\sqrt{x})^{2}}=\frac{-1}{2 \sqrt{x}(1+\sqrt{x})^{2}}
\end{aligned}
$$

2. Do any two (2) of a-d. $[10=2 \times 5$ each $]$
a. Find the intercepts and the coordinates of the vertex of the parabola $y=x^{2}-2 x-3$.
b. Compute $\lim _{x \rightarrow 0} \frac{x^{2}}{\sin (x)}$.
c. Find $f^{-1}(x)$ for $f(x)=\frac{1}{1+\sqrt{x}}$.
d. Use the limit definition of the derivative to find $f^{\prime}(1)$ if $f(x)=x^{2}+x$.

Solutions. a. When $x=0, y=0^{2}-2 \cdot 0-3=-3$, so the y-intercept is at -3 . Since $y=x^{2}-2 x-3=(x+1)(x-3)$, which $=0$ when $x=-1$ and when $x=3$, the x-intercepts are at -1 and 3 . (One could also find them using the quadratic formula.) The vertex of the parabola will be halfway between the x-intercepts, at $x=1$, for which $y=1^{2}-2 \cdot 1-3=-4$, so the vertex is $(1,-4)$. (One could also find the vertex by completing the square.)
b. Method i. Using algebra and the Limit Laws:

$$
\lim _{x \rightarrow 0} \frac{x^{2}}{\sin (x)}=\lim _{x \rightarrow 0} \frac{x}{\frac{\sin (x)}{x}}=\frac{\lim _{x \rightarrow 0} x}{\lim _{x \rightarrow 0} \frac{\sin (x)}{x}}=\frac{0}{1}=0
$$

Method ii. Using l'Hôpital's Rule, which is applicable since both $x^{2} \rightarrow 0$ and $\sin (x) \rightarrow 0$ as $x \rightarrow 0$:

$$
\lim _{x \rightarrow 0} \frac{x^{2}}{\sin (x)}=\lim _{x \rightarrow 0} \frac{\frac{d}{d x} x^{2}}{\frac{d}{d x} \sin (x)}=\lim _{x \rightarrow 0} \frac{2 x}{\cos (x)}=\frac{2 \cdot 0}{\cos (0)}=\frac{0}{1}=0
$$

c. As usual, we set $x=f(y)$ and try to solve for y :

$$
\begin{aligned}
x=f(y)=\frac{1}{1+\sqrt{y}} & \Longrightarrow x(1+\sqrt{y})=1 \quad \Longrightarrow 1+\sqrt{y}=\frac{1}{x} \\
& \Longrightarrow \sqrt{y}=\frac{1}{x}-1 \quad \Longrightarrow \quad f^{-1}(x)=y=\left(\frac{1}{x}-1\right)^{2}
\end{aligned}
$$

Note that $f(x)=\frac{1}{1+\sqrt{x}}$ has domain $[0, \infty)$ and range $(0,1]$, while $f^{-1}(x)=\left(\frac{1}{x}-1\right)^{2}$ has domain $x \neq 0$ and range $[0, \infty)$. You can amuse yourself working out that asymmetry.
d. Here goes:

$$
\begin{aligned}
f^{\prime}(1) & =\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0} \frac{\left[(1+h)^{2}+(1+h)\right]-\left[1^{2}+1\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[1^{2}+2 \cdot 1 \cdot h+h^{2}+1+h\right]-2}{h}=\lim _{h \rightarrow 0} \frac{3 h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(3+h)}{h}=\lim _{h \rightarrow 0}(3+h)=3+0=3
\end{aligned}
$$

3. Do one (1) of \mathbf{a} or \mathbf{b}. [8]
a. A Borg cube's volume expands proportionately to how much matter it ingests: every 100 kg of matter ingested adds $1 \mathrm{~m}^{3}$ to the volume. If the Borg cube ingests matter at a constant rate of $3000 \mathrm{~kg} / \mathrm{s}$, how quickly is each side of the cube growing at the instant that each side of the cube measures 10 m ?
b. What is the maximum area of a rectangle whose total perimeter is 16 m ?

Solutions. a. A cube with side length s has volume $V=s^{3}$. We are told that the volume expands at a (constant!) rate of

$$
\frac{d V}{d t}=3000 \mathrm{~kg} / \mathrm{s} \cdot \frac{1}{100} \mathrm{~m}^{3} / \mathrm{kg}=30 \mathrm{~m}^{3} / \mathrm{s}
$$

On the other hand,

$$
\frac{d V}{d t}=\frac{d}{d t} s^{3}=\left(\frac{d}{d s} s^{3}\right) \cdot \frac{d s}{d t}=3 s^{2} \frac{d s}{d t}
$$

Combining these and solving for $\frac{d s}{d t}$, we get

$$
\frac{d s}{d t}=\frac{\frac{d V}{d t}}{3 s^{2}}=\frac{30}{3 s^{2}}=\frac{10}{s^{2}}
$$

We want to know what $\frac{d s}{d t}$ is when $s=10 \mathrm{~m}$:

$$
\left.\frac{d s}{d t}\right|_{s=10}=\frac{10}{10^{2}}=\frac{1}{10}=0.1 \mathrm{~m} / \mathrm{s}
$$

b. Suppose the rectangle has height h and width w; its perimeter is then $P=2 h+2 w=16$ and its area is $A=h w$. The former equation implies that $2 h=16-2 w$, i.e. $h=8-w$, so

$$
A=(8-w) w=8 w-w^{2} .
$$

Note that $0 \leq w \leq 8$; at $w=0$ all the perimeter of the rectangle is concentrated in the height, and at $w=8$, all the perimeter of the rectangle is concentrated in the width. At either extreme, the area of the rectangle is 0 .

Taking the derivative,

$$
\frac{d A}{d w}=\frac{d}{d w}\left(8 w-w^{2}\right)=8-2 w
$$

This $=0$ exactly when $w=\frac{8}{2}=4$, at which point $A=(8-4) 4=4^{2}=16$. This must be a maximum since the area is 0 at the endpoints $w=0$ and $w=8$.

Thus the maximum area of the rectangle whose total perimeter is 16 m is $16 \mathrm{~m}^{2}$.
4. Find the domain and all the intercepts, vertical and horizontal asymptotes, maxima and minima, and points of inflection of $f(x)=\frac{x^{2}+1}{x}$, and sketch its graph. [10]
Solution. We run through the checklist:
i. Domain. $f(x)=\frac{x^{2}+1}{x}$ is a rational function, which is defined (and continuous and differentiable) unless the denominator is 0 , so the domain consists of all $x \neq 0$.
ii. Intercepts. Since $f(x)$ is undefined at $x=0$, the function has no y-intercept.

Since $y=f(x)=\frac{x^{2}+1}{x}=0$ only if $x^{2}+1=0$, and $x^{2}+1 \geq 1>0$ for all $x, f(x)$ cannot equal 0 , so there are no x-intercepts either.
iii. Vertical asymptotes. Since $f(x)=\frac{x^{2}+1}{x}$ is defined and continuous for all $x \neq 0$, the only place there might be a vertical asymptote is at 0 . We check in the usual way:

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} \frac{x^{2}+1}{x}=\lim _{x \rightarrow 0^{-}}\left(x+\frac{1}{x}\right)=0^{-}+(-\infty)=-\infty \\
& \lim _{x \rightarrow 0^{+}} \frac{x^{2}+1}{x}=\lim _{x \rightarrow 0^{+}}\left(x+\frac{1}{x}\right)=0^{+}+(+\infty)=+\infty
\end{aligned}
$$

Thus the function has a vertical asymptote at 0 , going down to $-\infty$ on the left and up to $+\infty$ on the right.
$i v$. Horizontal asymptotes. We check in the usual way:

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} \frac{x^{2}+1}{x}=\lim _{x \rightarrow-\infty}\left(x+\frac{1}{x}\right)=-\infty+0=-\infty \\
& \lim _{x \rightarrow+\infty} \frac{x^{2}+1}{x}=\lim _{x \rightarrow+\infty}\left(x+\frac{1}{x}\right)=+\infty+0=+\infty
\end{aligned}
$$

Thus the function has no horizontal asymptotes.

v. Increase. decrease, maxima, and minima. Derivatives at last!

$$
f^{\prime}(x)=\frac{d}{d x}\left(\frac{x^{2}+1}{x}\right)=\frac{d}{d x}\left(x+\frac{1}{x}\right)=1-\frac{1}{x^{2}}=\frac{x^{2}-1}{x^{2}}
$$

It follows that $f^{\prime}(x)=0$ exactly when $x^{2}-1=0$, i.e. exactly when $x= \pm 1$. Since $x^{2}>0$ for all $x \neq 0, f^{\prime}(x)=\frac{x^{2}-1}{x^{2}}$ is positive or negative exactly when $x^{2}-1$ is positive or negative. $x^{2}-1>0$ exactly when $x^{2}>1$, i.e. when $x<-1$ or when $x>1$, and $x^{2}-1<0$ exactly when $x^{2}<1$, i.e. when $-1<x<1$. Thus $f(x)$ is increasing when $x<-1$ or $x>1$, and decreasing when $-1<x<1$, so it has a (local) maximum at $x=-1$ and a (local) minimum at $x=1$. We summarize all of this in the usual table, recalling that $f(x)$ is undefined at $x=0$ (as is $f^{\prime}(x)$, too):

$$
\begin{array}{cccccccc}
x & (-\infty,-1) & -1 & (-1,0) & 0 & (0,1) & 1 & (1, \infty) \\
f^{\prime}(x) & + & 0 & - & \text { undef. } & - & 0 & + \\
f(x) & \uparrow & \max & \downarrow & \text { undef. } & \downarrow & \min & \uparrow
\end{array}
$$

Note that $f(-1)=\frac{(-1)^{2}+1}{-1}=-2$ and $f(1)=\frac{1^{2}+1}{1}=2$. Since the minimum we found is larger than the maximum we found, they are only local, and not absolute, extreme points. vi. Concavity and points of inflection. More derivatives!

$$
f^{\prime \prime}(x)=\frac{d}{d x} f^{\prime}(x)=\frac{d}{d x}\left(\frac{x^{2}-1}{x^{2}}\right)=\frac{d}{d x}\left(1-\frac{1}{x^{2}}\right)=0-\left(\frac{-2}{x^{3}}\right)=\frac{2}{x^{3}}
$$

It follows that $f^{\prime \prime}(x)$ is never equal to 0 . It is, however, undefined for $x=0$, and when $x<0, f^{\prime \prime}(x)<0$, while when $x>0, f^{\prime \prime}(x)>0$, so $f(x)$ is concave down for $x<0$ and concave up for $x>0$. (Since $f(x)$ is undefined at $x=0$, it does not actually have an inflection point there.) We summarize all of this in another table:

$$
\begin{array}{cccc}
x & (-\infty, 0) & 0 & (0, \infty) \\
f^{\prime \prime}(x) & - & \text { undef. } & + \\
f(x) & \frown & \text { undef. } & \smile
\end{array}
$$

vii. The graph. Cheating slightly, I used KAlgebra to plot the graph:

