Mathematics 1101Y - Calculus I: Functions and calculus of one variable
 Trent University, 2013-2014

Solutions to Assignment \#O
 \bigcirc Curves

A cardioid is one of a family of heart-shaped curves; the polar curve $r=1+\cos (\theta)$, for $0 \leq \theta \leq 2 \pi$, from problem 4 on Assignment \#1 is a common example of one:

In this assignment we will consider the very similar cardioid given

- algebraically in Cartesian coordinates by $\left(x^{2}+y^{2}+2 y\right)^{2}=4\left(x^{2}+y^{2}\right)$;
- parametrically in Cartesian coordinates by $x=\frac{8 t}{\left(t^{2}+1\right)^{2}}$ and $y=\frac{4\left(t^{2}-1\right)}{\left(t^{2}+1\right)^{2}}$, for $-\infty<$
$t<\infty$ [technically, this parametrization omits the point $(0,0)$]; and
- in polar coordinates by $r=2(1-\sin (\theta))$, for $0 \leq \theta \leq 2 \pi$.

1. Plot all three descriptions of the given cardioid. [1.5]

Solution.
$>$ with (plots)
$>$ implicitplot $\left(x^{\wedge} 2+y^{\wedge} 2+2 * y\right)^{\wedge} 2=4 *\left(x^{\wedge} 2+y^{\wedge} 2\right), x=-4 . .4, y=-5.1$, gridrefine $\left.=4\right)$


```
> plot([8*t/(t^2+1)^2, (4*(t^2-1))/(t^2+1)^2, t=-100..100])
```



```
polarplot(2*(1-sin(t)), t=0..2*Pi)
```


2. Pick two of the three descriptions and show that all the points given by one of them are also given by the other. [2.5]
Solution. We'll show that the equation $\left(x^{2}+y^{2}+2 y\right)^{2}=4\left(x^{2}+y^{2}\right)$ and the parametric curve $x=\frac{8 t}{\left(t^{2}+1\right)^{2}}$ and $y=\frac{4\left(t^{2}-1\right)}{\left(t^{2}+1\right)^{2}}$, for $-\infty<t<\infty$, give the same points [except for $(0,0)$, which the parametric curve omits].

First, suppose $t \in(-\infty, \infty)$, and $x=\frac{8 t}{\left(t^{2}+1\right)^{2}}$ and $y=\frac{4\left(t^{2}-1\right)}{\left(t^{2}+1\right)^{2}}$, We need to check that $\left(x^{2}+y^{2}+2 y\right)^{2}=4\left(x^{2}+y^{2}\right)$. On the simpler hand,

$$
\begin{aligned}
4\left(x^{2}+y^{2}\right) & =4\left(\left[\frac{8 t}{\left(t^{2}+1\right)^{2}}\right]^{2}+\left[\frac{4\left(t^{2}-1\right)}{\left(t^{2}+1\right)^{2}}\right]^{2}\right)=4\left(\frac{64 t^{2}}{\left(t^{2}+1\right)^{4}}+\frac{16\left(t^{4}-2 t^{2}+1\right)}{\left(t^{2}+1\right)^{4}}\right) \\
& =4 \frac{64 t^{2}+16 t^{4}-32 t^{2}+16}{\left(t^{2}+1\right)^{4}}=4 \frac{16 t^{4}+32 t^{2}+16}{\left(t^{2}+1\right)^{4}}=\frac{64 t^{4}+128 t^{2}+64}{\left(t^{2}+1\right)^{4}} \\
& =\frac{64\left(t^{4}+2 t^{2}+1\right)}{\left(t^{2}+1\right)^{4}}=\frac{64\left(t^{2}+1\right)^{2}}{\left(t^{2}+1\right)^{4}}=\frac{64}{\left(t^{2}+1\right)^{2}},
\end{aligned}
$$

and on the more complicated hand, reusing the part of the above calculation in which we worked out $x^{2}+y^{2}$ in terms of t, we have

$$
\begin{aligned}
\left(x^{2}+y^{2}+2 y\right)^{2} & =\left(\left[\frac{8 t}{\left(t^{2}+1\right)^{2}}\right]^{2}+\left[\frac{4\left(t^{2}-1\right)}{\left(t^{2}+1\right)^{2}}\right]^{2}+2 \frac{4\left(t^{2}-1\right)}{\left(t^{2}+1\right)^{2}}\right)^{2} \\
& =\left(\frac{16 t^{4}+32 t^{2}+16}{\left(t^{2}+1\right)^{4}}+\frac{8\left(t^{2}-1\right)}{\left(t^{2}+1\right)^{2}}\right)^{2}=\left(\frac{16\left(t^{4}+2 t^{2}+1\right)}{\left(t^{2}+1\right)^{4}}+\frac{8 t^{2}-8}{\left(t^{2}+1\right)^{2}}\right)^{2} \\
& =\left(\frac{16\left(t^{2}+1\right)^{2}}{\left(t^{2}+1\right)^{4}}+\frac{8 t^{2}-8}{\left(t^{2}+1\right)^{2}}\right)^{2}=\left(\frac{16}{\left(t^{2}+1\right)^{2}}+\frac{8 t^{2}-8}{\left(t^{2}+1\right)^{2}}\right)^{2} \\
& =\left(\frac{8 t^{2}+8}{\left(t^{2}+1\right)^{2}}\right)^{2}=\left(\frac{8\left(t^{2}+1\right)}{\left(t^{2}+1\right)^{2}}\right)^{2}=\left(\frac{8}{t^{2}+1}\right)^{2}=\frac{64}{\left(t^{2}+1\right)^{2}}=4\left(x^{2}+y^{2}\right)
\end{aligned}
$$

Thus every point on the parametric curve $x=\frac{8 t}{\left(t^{2}+1\right)^{2}}$ and $y=\frac{4\left(t^{2}-1\right)}{\left(t^{2}+1\right)^{2}}$, for $-\infty<t<\infty$, is on the Cartesian curve $\left(x^{2}+y^{2}+2 y\right)^{2}=4\left(x^{2}+y^{2}\right)$.

Second, suppose (x, y) is a point other than $(0,0)$ [which is omitted by the parametrization] on the curve $\left(x^{2}+y^{2}+2 y\right)^{2}=4\left(x^{2}+y^{2}\right)$. We need to show that there is a $t \in(-\infty, \infty)$ such that $x=\frac{8 t}{\left(t^{2}+1\right)^{2}}$ and $y=\frac{4\left(t^{2}-1\right)}{\left(t^{2}+1\right)^{2}}$. If $(x, y)=(0,-4)$, then it is easy to see that $t=0$ does the job. Since we don't have to worry about the points $(0,0)$ and $(0,-4)$, we may suppose that $x \neq 0$. We can then reverse-engineer the required t. Rearranging $x=\frac{8 t}{\left(t^{2}+1\right)^{2}}$ and $y=\frac{4\left(t^{2}-1\right)}{\left(t^{2}+1\right)^{2}}$ gives us $\left(t^{2}+1\right)^{2}=\frac{8 t}{x}$ and $y\left(t^{2}+1\right)^{2}=4\left(t^{2}-1\right)$, so $\frac{8 t y}{x}=4\left(t^{2}-1\right)$ and hence $8 y t=4 x t^{2}-4 x$. Rearranging this a little gives us $4 x t^{2}-8 y t-4 x=0$, and dividing by 4 makes this $x t^{2}-2 y t-x=0$. Applying the quadratic formula now tells us that

$$
t=\frac{-(-2 y) \pm \sqrt{(-2 y)^{2}-4 \cdot x \cdot(-x)}}{2 x}=\frac{2 y \pm \sqrt{4 y^{2}+4 x^{2}}}{2 x}=\frac{2 y \pm 2 \sqrt{x^{2}+y^{2}}}{2 x}=\frac{y \pm \sqrt{x^{2}+y^{2}}}{x}
$$

Since there is always a t that does the job - you figure out which of the two possibilities it might be! - every point on the curve $\left(x^{2}+y^{2}+2 y\right)^{2}=4\left(x^{2}+y^{2}\right)$ [except $\left.(0,0)\right]$ is on the parametric curve $x=\frac{8 t}{\left(t^{2}+1\right)^{2}}$ and $y=\frac{4\left(t^{2}-1\right)}{\left(t^{2}+1\right)^{2}}$, for $-\infty<t<\infty$.
3. Find the area of the region enclosed by the given cardioid. [3]

Hint: This is most easily done in polar coordinates. You can look up how to compute areas in polar coordinates in $\S 11.4$.
Solution. We apply the area formula $A=\int_{a}^{b} \frac{1}{2} r^{2} d \theta$ to the curve $r=2(1-\sin (\theta))$, for $0 \leq \theta \leq 2 \pi$, and integrate away:

$$
\begin{aligned}
A & =\int_{a}^{b} \frac{1}{2} r^{2} d \theta=\int_{0}^{2 \pi} \frac{1}{2}[2(1-\sin (\theta))]^{2} d \theta=\frac{4}{2} \int_{0}^{2 \pi}\left(1-2 \sin (\theta)+\sin ^{2}(\theta)\right) d \theta \\
& =\frac{1}{2} \int_{0}^{2 \pi} 1 d \theta-\frac{2}{2} \int_{0}^{2 \pi} \sin (\theta) d \theta+\frac{1}{2} \int_{0}^{2 \pi} \sin ^{2}(\theta) d \theta \\
& =\left.\frac{1}{2} \theta\right|_{0} ^{2 \pi}-\left.(-\cos (\theta))\right|_{0} ^{2 \pi}+\frac{1}{2} \int_{0}^{2 \pi} \frac{1}{2}(1-\cos (2 \theta)) d \theta \quad \begin{array}{l}
\text { Use } u=2 \theta, \text { so } d u=2 d \theta, \\
\text { i.e. } d \theta=\frac{1}{2} d u \text { and } \begin{array}{c}
\theta 02 \pi \\
u 0 \pi
\end{array} \\
\\
\end{array}=\frac{1}{2}(2 \pi-0)+\left.\cos (\theta)\right|_{0} ^{2 \pi}+\frac{1}{4} \int_{0}^{\pi}(1-\cos (u)) \frac{1}{2} d u=\pi+\cos (2 \pi)-\cos (0)+\left.\frac{1}{8}(u-\sin (u))\right|_{0} ^{\pi} \\
& =\pi+1-1+\frac{1}{8}(\pi-\sin (\pi))-\frac{1}{8}(0-\sin (0))=\pi+\frac{1}{8}(\pi-0)-\frac{1}{8}(0-0)=\frac{9}{8} \pi \quad
\end{aligned}
$$

4. Find the arc-length of the given cardioid. [3]

Hint: You can look up how to compute the arc-length of a curve in the textbook, too: $\S 8.1$ for doing so for Cartesian curves, $\S 11.2$ for parametric curves, and $\S 11.4$ for polar curves.

Solution. This is also easiest using the polar form of the curve. We apply the arc-length formula for polar curves, arc-length $=\int_{a}^{b} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta$, to the curve $r=2(1-\sin (\theta))$ (so $\left.\frac{d r}{d \theta}=-2 \cos (\theta)\right)$, for $0 \leq \theta \leq 2 \pi$, and integrate away, overcoming all obstacles as we encounter them:

$$
\begin{aligned}
\text { arc-length } & =\int_{a}^{b} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta=\int_{0}^{2 \pi} \sqrt{[2(1-\sin (\theta))]^{2}+[-2 \cos (\theta)]^{2}} d \theta \\
& =\int_{0}^{2 \pi} \sqrt{4-8 \sin (\theta)+4 \sin ^{2}(\theta)+4 \cos ^{2}(\theta)} d \theta \quad \text { but } \sin ^{2}(\theta)+\cos ^{2}(\theta)=1 \text {, so } \\
& =\int_{0}^{2 \pi} \sqrt{8-8 \sin (\theta)} d \theta=\int_{0}^{2 \pi} \sqrt{8(1-\sin (\theta))} d \theta=2 \sqrt{2} \int_{0}^{2 \pi} \sqrt{1-\sin (\theta)} d \theta \\
& =2 \sqrt{2} \int_{0}^{2 \pi} \sqrt{1-\sin (\theta)} \cdot \frac{\sqrt{1+\sin (\theta)}}{\sqrt{1+\sin (\theta)}} d \theta=2 \sqrt{2} \int_{0}^{2 \pi} \frac{\sqrt{(1-\sin (\theta))(1+\sin (\theta))}}{\sqrt{1+\sin (\theta)}} d \theta \\
& =2 \sqrt{2} \int_{0}^{2 \pi} \frac{\sqrt{1-\sin ^{2}(\theta)}}{\sqrt{1+\sin (\theta)}} d \theta=2 \sqrt{2} \int_{0}^{2 \pi} \frac{\sqrt{\cos ^{2}(\theta)}}{\sqrt{1+\sin (\theta)}} d \theta=2 \sqrt{2} \int_{0}^{2 \pi} \frac{|\cos (\theta)|}{\sqrt{1+\sin (\theta)}} d \theta
\end{aligned}
$$

and, since $\cos (\theta)$ isn't always equal to $|\cos (\theta)|$ for $0 \leq \theta \leq 2 \pi$, we split the integral up

$$
=2 \sqrt{2} \int_{0}^{\pi / 2} \frac{\cos (\theta)}{\sqrt{1+\sin (\theta)}} d \theta+2 \sqrt{2} \int_{\pi / 2}^{3 \pi / 2} \frac{-\cos (\theta)}{\sqrt{1+\sin (\theta)}} d \theta+2 \sqrt{2} \int_{3 \pi / 2}^{2 \pi} \frac{\cos (\theta)}{\sqrt{1+\sin (\theta)}} d \theta
$$

and we substitute $u=1+\sin (\theta)$, so $d u=\cos (\theta) d \theta$ and $\begin{array}{ccccc}\theta & 0 & 0 \\ u & 1 & 2 & 2 & 3 \pi / 2 \\ 0 & 2 \pi & 1\end{array}$ in each part,

$$
\begin{aligned}
& =2 \sqrt{2} \int_{1}^{2} \frac{1}{\sqrt{u}} d u+2 \sqrt{2} \int_{2}^{0} \frac{-1}{\sqrt{u}} d u+2 \sqrt{2} \int_{0}^{1} \frac{1}{\sqrt{u}} d u \\
& =2 \sqrt{2} \int_{1}^{2} \frac{1}{\sqrt{u}} d u+2 \sqrt{2} \int_{0}^{2} \frac{1}{\sqrt{u}} d u+2 \sqrt{2} \int_{0}^{1} \frac{1}{\sqrt{u}} d u \\
& =\left.2 \sqrt{2} \cdot 2 \sqrt{u}\right|_{1} ^{2}+\left.2 \sqrt{2} \cdot 2 \sqrt{u}\right|_{0} ^{2}+\left.2 \sqrt{2} \cdot 2 \sqrt{u}\right|_{0} ^{1} \\
& =2 \sqrt{2} \cdot 2 \sqrt{2}-2 \sqrt{2} \cdot 2 \sqrt{1}+2 \sqrt{2} \cdot 2 \sqrt{2}-2 \sqrt{2} \cdot 2 \sqrt{0}+2 \sqrt{2} \cdot 2 \sqrt{1}-2 \sqrt{2} \cdot 2 \sqrt{0} \\
& =8-4 \sqrt{2}+8-0+4 \sqrt{2}-0=16
\end{aligned}
$$

Whew!

