Mathematics 1101Y – Calculus I: Functions and calculus of one variable TRENT UNIVERSITY, 2013–2014

Solutions to Assignment #5 Epsilonics

One of the things we've skipped over was the formal definition of limit, that is, how to pin down just what $\lim_{x \to a} f(x) = L$ really means. The usual definition of limits is something like:

 $\varepsilon - \delta$ DEFINITION OF LIMITS. $\lim_{x \to a} f(x) = L$ exactly when for every $\varepsilon > 0$ there is a $\delta > 0$ such that for any x with $|x - a| < \delta$ we are guaranteed to have $|f(x) - L| < \varepsilon$ as well.

Informally, this means that no matter how close – that's the ε – you want f(x) to get to L, you can make it happen by ensuring that x is close enough – that's the δ – to a. If this can always be done, $\lim f(x) = L$; if not, then $\lim f(x) \neq L$.

This definition works, but most people find it a little hard to understand and use at first. Here is less common definition equivalent to the one above that is cast in terms of a game:

LIMIT GAME DEFINITION OF LIMITS. The *limit game* for f(x) at x = a with target L is a three-move game played between two players A and B as follows:

- 1. A moves first, picking a small number $\varepsilon > 0$.
- 2. B moves second, picking another small number $\delta > 0$.
- 3. A moves third, picking an x that is within δ of a, *i.e.* $a \delta < x < a + \delta$.

To determine the winner, we evaluate f(x). If it is within ε of the target L, *i.e.* $L - \varepsilon < f(x) < L + \varepsilon$, then player B wins; if not, then player A wins.

With this idea in hand, $\lim_{x\to a} f(x) = L$ means that player *B* has a winning strategy in the limit game for f(x) at x = a with target *L*; that is, if *B* plays it right, *B* will win no matter what *A* tries to do. (Within the rules ...:-) Conversely, $\lim_{x\to a} f(x) \neq L$ means that player *A* is the one with a winning strategy in the limit game for f(x) at x = a with target *L*.

Your task in this assignment, should you choose to accept it, is to find such winning strategies:

1. Describe a winning strategy for B in the limit game for f(x) = 2x - 1 at x = 2 with target 3. Note that no matter what number εA plays first, B must have a way to find a δ to play that will make it impossible for A to play an x that wins for A on the third move. [3]

SOLUTION. Whatever $\varepsilon > 0$ A may play, B will win by responding with $\delta = \frac{\varepsilon}{2}$. (Any positive δ which is even smaller will also work.) No matter what x A chooses with $|x - 2| < \delta = \frac{\varepsilon}{2}$, we have

$$|f(x) - 3| = |(2x - 1) - 3| = |2x - 4| = 2|x - 2| < 2\delta = 2\frac{\varepsilon}{2} = \varepsilon$$

so B wins.

NOTE: One gets $\delta = \varepsilon/2$ by reverse-engineering the δ from the desired conclusion, $|f(x) - 3| < \varepsilon$:

$$|f(x) - 3| < \varepsilon \iff |(2x - 1) - 3| < \varepsilon \iff |2x - 4| < \varepsilon \iff 2|x - 2| < \varepsilon \iff |x - 2| < \frac{\varepsilon}{2}$$

2. Describe a winning strategy for A in the limit game for f(x) = 2x - 3 at x = 2 with target 2. Note that A must pick an ε on the first move so that no matter what δ B tries to play on the second move, A can still find an x to play on move three that wins for A. [3]

SOLUTION. For the first move, let A play $\varepsilon = \frac{1}{2}$. (Any positive $\varepsilon \leq 1$ will also work.) No matter what $\delta > 0$ B plays in response, A can respond in turn with any x such that $2 < x < 2 + \delta$. Since

$$x > 2 \implies f(x) = 2x - 1 > 2 \cdot 2 - 1 = 3 > 2.5 = 2 + \frac{1}{2} = 2 + \varepsilon$$

so $|f(x) - 2| = f(x) - 2 \ge \frac{1}{2} = \varepsilon$, which means that A wins.

NOTE: How does one figure out what ε to pick to begin with? You need one that is small enough to separate the target, 2, from where the function is really going, f(2) = 3. That is, any ε that is less than the distance between these two numbers, |2 - 3| = 1, will do. [Why does $\varepsilon = 1$ still – barely – do the job?]

- **3.** Use either definition of limits above to verify that $\lim_{x\to 1} (x^2 + 2) = 3$. [4]
 - *Hint:* The choice of δ in **3** will probably require some slightly indirect reasoning. Pick some arbitrary smallish positive number, say 1, for δ as a first cut. If it doesn't do the job, but x is at least that close, you'll have some more information to help pin down the δ you really need.

SOLUTION. We'll use the standard $\varepsilon - \delta$ definition. As in the note after the solution to problem 1, we will attempt to reverse-engineer the $\delta > 0$ required:

$$|f(x) - L| < \varepsilon \iff |(x^2 + 2) - 3| < \varepsilon \iff |x^2 - 1| < \varepsilon$$
$$\Leftrightarrow |(x + 1)(x - 1)| < \varepsilon \iff |x - 1| < \frac{\varepsilon}{|x + 1|}$$

The problem is that δ is not allowed to depend on x. (Recall that A plays x after B plays δ in the limit game definition.) Following the hint, we get around this problem by accepting no δ greater than 1. (Any number that is less than the distance between x = 1 and x = -1 will do, actually.) This lets us put bounds around |x + 1| and so replace it with a constant in $\frac{\varepsilon}{|x+1|}$ above. If $|x - 1| < \delta \leq 1$, then

$$\begin{aligned} -1 < x - 1 < 1 &\Leftrightarrow 0 = -1 + 1 < x = x - 1 + 1 < 1 + 1 = 2 \\ &\Leftrightarrow 1 = 0 + 1 < x + 1 < 2 + 1 = 3 \\ &\Leftrightarrow 1 = \frac{1}{1} > \frac{1}{x + 1} > \frac{1}{3}. \end{aligned}$$

Note that it also follows that if $|x-1| < \delta \leq 1$, then x+1 > 0 and so |x+1| = x+1. Thus, if $|x-1| < \delta \leq 1$, we have $|x-1| < \frac{\varepsilon}{3} < \frac{\varepsilon}{|x+1|}$.

It follows that if we let $\delta = \min\left(1, \frac{\varepsilon}{3}\right)$, the lesser of 1 and $\frac{\varepsilon}{3}$, then no matter what x is chosen that satisfies $|x - 1| < \delta$, we get that $\delta \le 15$, and so

$$\begin{aligned} |x-1| < \min\left(1, \frac{\varepsilon}{3}\right) &\leq \frac{\varepsilon}{3} < \frac{\varepsilon}{|x+1|} \implies |(x+1)(x-1)| < \varepsilon \\ &\Rightarrow |x^2 - 1| < \varepsilon \\ &\Rightarrow |(x^2 + 2) - 3| < \varepsilon \,, \end{aligned}$$

as the standard $\varepsilon - \delta$ definition requires to have that $\lim_{x \to 1} (x^2 + x + 1) = 3$.