# Mathematics 1101Y - Calculus I: Functions and calculus of one variable Trent University, 2013-2014 

## Solutions to Assignment \#5 Epsilonics

One of the things we've skipped over was the formal definition of limit, that is, how to pin down just what $\lim _{x \rightarrow a} f(x)=L$ really means. The usual definition of limits is something like:
$\varepsilon-\delta$ Definition of limits. $\lim _{x \rightarrow a} f(x)=L$ exactly when for every $\varepsilon>0$ there is a $\delta>0$
such that for any $x$ with $|x-a|<\delta$ we are guaranteed to have $|f(x)-L|<\varepsilon$ as well.
Informally, this means that no matter how close - that's the $\varepsilon$ - you want $f(x)$ to get to $L$, you can make it happen by ensuring that $x$ is close enough - that's the $\delta$ - to $a$. If this can always be done, $\lim _{x \rightarrow a} f(x)=L$; if not, then $\lim _{x \rightarrow a} f(x) \neq L$.

This definition works, but most people find it a little hard to understand and use at first. Here is less common definition equivalent to the one above that is cast in terms of a game:

Limit game definition of limits. The limit game for $f(x)$ at $x=a$ with target $L$ is a three-move game played between two players $A$ and $B$ as follows:

1. $A$ moves first, picking a small number $\varepsilon>0$.
2. $B$ moves second, picking another small number $\delta>0$.
3. $A$ moves third, picking an $x$ that is within $\delta$ of $a$, i.e. $a-\delta<x<a+\delta$.

To determine the winner, we evaluate $f(x)$. If it is within $\varepsilon$ of the target $L$, i.e. $L-\varepsilon<$ $f(x)<L+\varepsilon$, then player $B$ wins; if not, then player $A$ wins.

With this idea in hand, $\lim _{x \rightarrow a} f(x)=L$ means that player $B$ has a winning strategy in the limit game for $f(x)$ at $x=a$ with target $L$; that is, if $B$ plays it right, $B$ will win no matter what $A$ tries to do. (Within the rules ...:-) Conversely, $\lim _{x \rightarrow a} f(x) \neq L$ means that player $A$ is the one with a winning strategy in the limit game for $f(x)$ at $x=a$ with target $L$.

Your task in this assignment, should you choose to accept it, is to find such winning strategies:

1. Describe a winning strategy for $B$ in the limit game for $f(x)=2 x-1$ at $x=2$ with target 3 . Note that no matter what number $\varepsilon A$ plays first, $B$ must have a way to find a $\delta$ to play that will make it impossible for $A$ to play an $x$ that wins for $A$ on the third move. [3]
Solution. Whatever $\varepsilon>0$ A may play, $B$ will win by responding with $\delta=\frac{\varepsilon}{2}$. (Any positive $\delta$ which is even smaller will also work.) No matter what $x A$ chooses with $|x-2|<\delta=\frac{\varepsilon}{2}$, we have

$$
|f(x)-3|=|(2 x-1)-3|=|2 x-4|=2|x-2|<2 \delta=2 \frac{\varepsilon}{2}=\varepsilon,
$$

so $B$ wins.
Note: One gets $\delta=\varepsilon / 2$ by reverse-engineering the $\delta$ from the desired conclusion, $|f(x)-3|<\varepsilon$ :

$$
|f(x)-3|<\varepsilon \Leftrightarrow|(2 x-1)-3|<\varepsilon \Leftrightarrow|2 x-4|<\varepsilon \Leftrightarrow 2|x-2|<\varepsilon \Leftrightarrow|x-2|<\frac{\varepsilon}{2}
$$

2. Describe a winning strategy for $A$ in the limit game for $f(x)=2 x-3$ at $x=2$ with target 2 . Note that $A$ must pick an $\varepsilon$ on the first move so that no matter what $\delta B$ tries to play on the second move, $A$ can still find an $x$ to play on move three that wins for $A$. [3]
Solution. For the first move, let $A$ play $\varepsilon=\frac{1}{2}$. (Any positive $\varepsilon \leq 1$ will also work.) No matter what $\delta>0 B$ plays in response, $A$ can respond in turn with any $x$ such that $2<x<2+\delta$. Since

$$
x>2 \Longrightarrow f(x)=2 x-1>2 \cdot 2-1=3>2.5=2+\frac{1}{2}=2+\varepsilon
$$

so $|f(x)-2|=f(x)-2 \geq \frac{1}{2}=\varepsilon$, which means that $A$ wins.
Note: How does one figure out what $\varepsilon$ to pick to begin with? You need one that is small enough to separate the target, 2 , from where the function is really going, $f(2)=3$. That is, any $\varepsilon$ that is less than the distance between these two numbers, $|2-3|=1$, will do. [Why does $\varepsilon=1$ still barely - do the job?]
3. Use either definition of limits above to verify that $\lim _{x \rightarrow 1}\left(x^{2}+2\right)=3$. [4]

Hint: The choice of $\delta$ in $\mathbf{3}$ will probably require some slightly indirect reasoning. Pick some arbitrary smallish positive number, say 1 , for $\delta$ as a first cut. If it doesn't do the job, but $x$ is at least that close, you'll have some more information to help pin down the $\delta$ you really need.

Solution. We'll use the standard $\varepsilon-\delta$ definition. As in the note after the solution to problem 1, we will attempt to reverse-engineer the $\delta>0$ required:

$$
\begin{aligned}
|f(x)-L|<\varepsilon & \Leftrightarrow\left|\left(x^{2}+2\right)-3\right|<\varepsilon \Leftrightarrow\left|x^{2}-1\right|<\varepsilon \\
& \Leftrightarrow|(x+1)(x-1)|<\varepsilon \Leftrightarrow|x-1|<\frac{\varepsilon}{|x+1|}
\end{aligned}
$$

The problem is that $\delta$ is not allowed to depend on $x$. (Recall that $A$ plays $x$ after $B$ plays $\delta$ in the limit game definition.) Following the hint, we get around this problem by accepting no $\delta$ greater than 1. (Any number that is less than the distance between $x=1$ and $x=-1$ will do, actually.) This lets us put bounds around $|x+1|$ and so replace it with a constant in $\frac{\varepsilon}{|x+1|}$ above. If $|x-1|<\delta \leq 1$, then

$$
\begin{aligned}
-1<x-1<1 & \Leftrightarrow 0=-1+1<x=x-1+1<1+1=2 \\
& \Leftrightarrow 1=0+1<x+1<2+1=3 \\
& \Leftrightarrow 1=\frac{1}{1}>\frac{1}{x+1}>\frac{1}{3} .
\end{aligned}
$$

Note that it also follows that if $|x-1|<\delta \leq 1$, then $x+1>0$ and so $|x+1|=x+1$. Thus, if $|x-1|<\delta \leq 1$, we have $|x-1|<\frac{\varepsilon}{3}<\frac{\varepsilon}{|x+1|}$.

It follows that if we let $\delta=\min \left(1, \frac{\varepsilon}{3}\right)$, the lesser of 1 and $\frac{\varepsilon}{3}$, then no matter what $x$ is chosen that satisfies $|x-1|<\delta$, we get that $\delta \leq 15$, and so

$$
\begin{aligned}
|x-1|<\min \left(1, \frac{\varepsilon}{3}\right) \leq \frac{\varepsilon}{3}<\frac{\varepsilon}{|x+1|} & \Rightarrow|(x+1)(x-1)|<\varepsilon \\
& \Rightarrow\left|x^{2}-1\right|<\varepsilon \\
& \Rightarrow\left|\left(x^{2}+2\right)-3\right|<\varepsilon
\end{aligned}
$$

as the standard $\varepsilon-\delta$ definition requires to have that $\lim _{x \rightarrow 1}\left(x^{2}+x+1\right)=3$.

