Mathematics 1101Y – Calculus I: Functions and calculus of one variable TRENT UNIVERSITY, 2013–2014 Final Examination

Time: 19:00–22:00, on Tuesday, 15 April, 2014. Brought to you by Стефан Біланюк. **Instructions:** Do parts L, M, and N, and, if you wish, part O. Show all your work and justify all your answers. If in doubt about something, ask!

Aids: Any calculator; (all sides of) one aid sheet; one (1) brain (no neuron limit).

Part L. Do all four (4) of 1-4.

1. Compute
$$\frac{dy}{dx}$$
 as best you can in any three (3) of **a**-**f**. $[15 = 3 \times 5 \ each]$
a. $y = \left(\frac{x+1}{x-1}\right)^2$ **b.** $y = \int_0^x te^{t^2} dt$ **c.** $\substack{y = -\cos(t) \\ x = \sin(t)}$
d. $\ln(xy) = 0$ **e.** $y = \sin(\sqrt{x})$ **f.** $y = x^{\pi}e^x$

2. Evaluate any three (3) of the integrals \mathbf{a} -f. $[15 = 3 \times 5 \text{ each}]$

a.
$$\int \frac{e^{\sqrt{t}}}{2\sqrt{t}} dt$$
 b. $\int_{0}^{\pi/2} x \cos(x) dx$ **c.** $\int \sqrt{1-x^2} dx$
d. $\int_{0}^{\infty} e^{-y} dy$ **e.** $\int \frac{x^2 + x + 1}{x(x^2 + 1)} dx$ **f.** $\int_{0}^{\pi/4} \tan^2(z) dz$

- **3.** Do any three (3) of **a**–**g**. $[15 = 3 \times 5 \text{ each}]$
 - **a.** Let $f(x) = x^2 + 1$ and compute f'(1) using the limit definition of the derivative.
 - **b.** Find the arc-length of the curve $y = \frac{2}{3}x^{3/2}, 0 \le x \le 3$.
 - **c.** Compute $\lim_{n \to \infty} \frac{n^2}{e^n}$.
 - **d.** Determine whether $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ converges absolutely or conditionally, or diverges.
 - e. Sketch the polar curve $r = \sec(\theta)$, $0 \le \theta \le \frac{\pi}{4}$, and find the area of the region between this curve and the origin.
 - **f.** Find the number b such that the average value of y = 1 x on $0 \le x \le b$ is $\frac{1}{2}$.

g. Find the interval of convergence of the power series $\sum_{n=0}^{\infty} 4^{-n} x^n$.

- 4. Consider the region below y = √1 x²/4 and above y = 0, for -2 ≤ x ≤ 2.
 a. Sketch the region and find its area. /6/
 - **b.** Sketch the solid obtained by revolving this region about the x-axis and find its volume. [6]

Part M. Do any *two* (2) of **5–7**. $[28 = 2 \times 14 \text{ each}]$

- 5. Find the domain and any and all intercepts, vertical and horizontal asymptotes, and maximum, minimum, and inflection points of $f(x) = e^{-x^2}$, and sketch its graph.
- 6. Meredith, carrying a lamp 1.5 m above the ground, walks at 1 m/s along level ground directly toward a 1 m tall post at night. How is the length of the shadow cast by the post in the lamplight changing at the instant that the lamp is 2 m from the post?

7. Determine whether the series $\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n-1}}{\sqrt{n\sqrt{n}}}$ converges or diverges.

Part N. Do one (1) of 8 or 9. $[15 = 1 \times 15]$

- 8. Let $f(x) = \sin\left(\frac{x}{2}\right)$.
 - **a.** Use Taylor's formula to find the Taylor series at 0 of f(x). [9]
 - **b.** Find the radius and interval of convergence of this Taylor series. [6]
 - **c.** [Bonus!] Verify that the Taylor series at 0 of f(x) actually converges to f(x). [1]

9. Suppose
$$f(x)$$
 has $\sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}$ as its Taylor series at 0.

- **a.** Find the radius and interval of convergence of this Taylor series. [6]
- **b.** Use Taylor's formula to determine $f^{(n)}(0)$ for $n \ge 0$. [9]
- **c.** [Bonus!] Find a formula, other than the series, for f(x). [1]

|Total = 100|

Part O. Bonus problems! If you feel like it and have the time, do one or both of these.

O.
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25} + \dots = \frac{\pi^2}{6}$$
 Assuming this is so [which it is], what is the series
$$\sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} = 1 + \frac{1}{9} + \frac{1}{25} + \dots$$
 equal to? [1]

 \bigcirc . Write a haiku touching on calculus or mathematics in general. [1]

What is a haiku? seventeen in three: five and seven and five of syllables in lines

Have some fun this summer, AND DROP BY NEXT YEAR TO TELL ME ABOUT IT!