Mathematics 1101Y - Calculus I: Functions and calculus of one variable Trent University, 2013-2014
 Final Examination

Time: 19:00-22:00, on Tuesday, 15 April, 2014. Brought to you by Стефан Біланюк. Instructions: Do parts \mathbf{L}, \mathbf{M}, and \mathbf{N}, and, if you wish, part \mathbf{O}. Show all your work and justify all your answers. If in doubt about something, ask!
Aids: Any calculator; (all sides of) one aid sheet; one (1) brain (no neuron limit).
Part L. Do all four (4) of 1-4.

1. Compute $\frac{d y}{d x}$ as best you can in any three (3) of a-f. [15 $=3 \times 5$ each]
a. $y=\left(\frac{x+1}{x-1}\right)^{2}$
b. $y=\int_{0}^{x} t e^{t^{2}} d t$
c. $\begin{aligned} & y=-\cos (t) \\ & x=\sin (t)\end{aligned}$
d. $\ln (x y)=0$
e. $y=\sin (\sqrt{x})$
f. $y=x^{\pi} e^{x}$
2. Evaluate any three (3) of the integrals a-f. [15 $=3 \times 5$ each]
a. $\int \frac{e^{\sqrt{t}}}{2 \sqrt{t}} d t$
b. $\int_{0}^{\pi / 2} x \cos (x) d x$
c. $\int \sqrt{1-x^{2}} d x$
d. $\int_{0}^{\infty} e^{-y} d y$
e. $\int \frac{x^{2}+x+1}{x\left(x^{2}+1\right)} d x$
f. $\int_{0}^{\pi / 4} \tan ^{2}(z) d z$
3. Do any three (3) of a-g. [$15=3 \times 5$ each]
a. Let $f(x)=x^{2}+1$ and compute $f^{\prime}(1)$ using the limit definition of the derivative.
b. Find the arc-length of the curve $y=\frac{2}{3} x^{3 / 2}, 0 \leq x \leq 3$.
c. Compute $\lim _{n \rightarrow \infty} \frac{n^{2}}{e^{n}}$.
d. Determine whether $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$ converges absolutely or conditionally, or diverges.
e. Sketch the polar curve $r=\sec (\theta), 0 \leq \theta \leq \frac{\pi}{4}$, and find the area of the region between this curve and the origin.
f. Find the number b such that the average value of $y=1-x$ on $0 \leq x \leq b$ is $\frac{1}{2}$.
g. Find the interval of convergence of the power series $\sum_{n=0}^{\infty} 4^{-n} x^{n}$.
4. Consider the region below $y=\sqrt{1-\frac{x^{2}}{4}}$ and above $y=0$, for $-2 \leq x \leq 2$.
a. Sketch the region and find its area. [6]
b. Sketch the solid obtained by revolving this region about the x-axis and find its volume. [6]

Part M. Do any two (2) of 5-7. [28 $=2 \times 14$ each]
5. Find the domain and any and all intercepts, vertical and horizontal asymptotes, and maximum, minimum, and inflection points of $f(x)=e^{-x^{2}}$, and sketch its graph.
6. Meredith, carrying a lamp 1.5 m above the ground, walks at $1 \mathrm{~m} / \mathrm{s}$ along level ground directly toward a 1 m tall post at night. How is the length of the shadow cast by the post in the lamplight changing at the instant that the lamp is $2 m$ from the post?

7. Determine whether the series $\sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n-1}}{\sqrt{n \sqrt{n}}}$ converges or diverges.

Part N. Do one (1) of $\mathbf{8}$ or $\mathbf{9}$. [15 = $1 \times 15]$
8. Let $f(x)=\sin \left(\frac{x}{2}\right)$.
a. Use Taylor's formula to find the Taylor series at 0 of $f(x)$. [9]
b. Find the radius and interval of convergence of this Taylor series. [6]
c. [Bonus!] Verify that the Taylor series at 0 of $f(x)$ actually converges to $f(x)$. [1]
9. Suppose $f(x)$ has $\sum_{k=0}^{\infty} \frac{x^{2 k}}{(2 k)!}$ as its Taylor series at 0 .
a. Find the radius and interval of convergence of this Taylor series. [6]
b. Use Taylor's formula to determine $f^{(n)}(0)$ for $n \geq 0$. [9]
c. [Bonus!] Find a formula, other than the series, for $f(x)$. [1]

$$
[\text { Total }=100]
$$

Part O. Bonus problems! If you feel like it and have the time, do one or both of these.
○. $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\frac{1}{25}+\cdots=\frac{\pi^{2}}{6}$. Assuming this is so [which it is], what is the series $\sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}}=1+\frac{1}{9}+\frac{1}{25}+\cdots$ equal to? [1]
〇. Write a haiku touching on calculus or mathematics in general. [1]

What is a haiku?

seventeen in three: five and seven and five of
syllables in lines
Have some fun this summer,
AND DROP BY NEXT YEAR TO TELL ME ABOUT IT!

