Trent University

MATH 1101Y Test \#2

Tuesday, 29 Wednesday, 30 January, 2013
Time: 50 minutes

Name:
Student Number:

Total $\quad / 40$

Instructions

- Show all your work. Legibly, please!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator and an aid sheet.

1. Do any three (3) of a-f. $[12=3 \times 4$ each $]$
a. $\int \frac{1}{\sqrt{4-x^{2}}} d x$
b. $\int_{-1}^{1}(y+1)^{2} d y$
c. $\int \sec ^{2}(w) \sqrt{\tan (w)} d w$
d. $\int_{0}^{1} t e^{t} d t$
e. $\int \cos ^{3}(x) d x$
f. $\int_{0}^{1} \frac{4}{1+x^{2}} d x$
a. We will use the trig substitution $x=2 \sin (\theta)$, so $d x=2 \cos (\theta) d \theta$ and $\theta=\arcsin \left(\frac{x}{2}\right)$.

$$
\begin{aligned}
\int \frac{1}{\sqrt{4-x^{2}}} d x & =\int \frac{1}{\sqrt{4-2^{2} \sin ^{2}(\theta)}} 2 \cos (\theta) d \theta=\int \frac{2 \cos (\theta)}{\sqrt{4\left(1-\sin ^{2}(\theta)\right)}} d \theta \\
& =\int \frac{2 \cos (\theta)}{\sqrt{4 \cos ^{2}(\theta)}} d \theta=\int \frac{2 \cos (\theta)}{2 \cos (\theta)} d \theta \\
& =\int 1 \theta=\theta+C=\arcsin \left(\frac{x}{2}\right)+C
\end{aligned}
$$

b. One could just expand the square and integrate away, but we'll do it using the substitution $u=y+1$, so $d u=d y$ and $\begin{array}{ccc}y & -1 & 1 \\ u & 0 & 2\end{array}$. Easier arithmetic this way \ldots

$$
\int_{-1}^{1}(y+1)^{2} d y=\int_{0}^{2} u^{2} d u=\left.\frac{u^{3}}{3}\right|_{0} ^{2}=\frac{8}{3}-\frac{0}{3}=\frac{8}{3}
$$

c. We'll use the substitution $s=\tan (w)$, so $d s=\sec ^{2}(w) d w$.

$$
\begin{aligned}
\int \sec ^{2}(w) \sqrt{\tan (w)} d w & =\int \sqrt{s} d s=\int s^{1 / 2} d s=\frac{s^{3 / 2}}{3 / 2}+C \\
& =\frac{2}{3} s^{3 / 2}+C=\frac{2}{3} \tan ^{3 / 2}(w)+C
\end{aligned}
$$

d. We will ise integration by parts, with $u=t$ and $v^{\prime}=e^{t}$, so $u^{\prime}=1$ and $v=e^{t}$.

$$
\begin{aligned}
\int_{0}^{1} t e^{t} d t & =\int_{0}^{1} u v^{\prime} d t=\left.u v\right|_{0} ^{1}-\int_{0}^{1} u^{\prime} v d t=\left.t e^{t}\right|_{0} ^{1}-\int_{0}^{1} 1 e^{t} d t \\
& =\left(1 e^{1}-0 e^{0}\right)-\left.e^{t}\right|_{0} ^{1}=e-\left(e^{1}-e^{0}\right)=e-e+1=1
\end{aligned}
$$

e. This can be done with the help of the reduction formula for $\int \cos ^{k}(x) d x$ or by using integration by parts, but the cheapest way is probably to use the trigonometric identity $\cos ^{2}(x)=1-\sin ^{2}(x)$ and the substitution $u=\sin (x)$, so $d u=\cos (x) d x$.

$$
\begin{aligned}
\int \cos ^{3}(x) d x & =\int \cos ^{2}(x) \cos (x) d x=\int\left(1-\sin ^{2}(x)\right) \cos (x) d x \\
& =\int\left(1-u^{2}\right) d u=u-\frac{u^{3}}{3}+C=\sin (x)-\frac{1}{3} \sin ^{3}(x)+C
\end{aligned}
$$

f. We'll use the fact that $\frac{d}{d x} \arctan (x)=\frac{1}{1+x^{2}}$ in reverse.

$$
\int_{0}^{1} \frac{4}{1+x^{2}} d x=\left.4 \arctan (x)\right|_{0} ^{1}=4 \arctan (1)-4 \arctan (0)=4 \cdot \frac{\pi}{4}-4 \cdot 0=\pi
$$

2. Do any two (2) of $\mathbf{a}-\mathbf{c}$. $[10=2 \times 5$ each $]$
a. Sketch the region whose area is computed by the integral $\int_{2}^{4}\left(\frac{x}{2}-1\right) d x$. Without evaluating the integral, what is its area?
b. Sketch the solid obtained by revolving the region below $y=2$ and above $y=1$, for $0 \leq x \leq 1$, about the x-axis, and find its volume.
c. Compute $\int_{-41 \pi}^{41 \pi} \arctan (\theta) d \theta$.
a. Here's a sketch of the region:

Note that the line $y=\frac{x}{2}-1$ has x-intercept $x=2$ and has $y=1$ at $x=4$, so it is above the x-axis for $2<x \leq 4$. $\int_{2}^{4}\left(\frac{x}{2}-1\right) d x$ represents the area beneath this line and above the x-axis for $2 \leq x \leq 4$, but this region is just a triangle with base 2 and height 1 . Thus

$$
\int_{2}^{4}\left(\frac{x}{2}-1\right) d x=\frac{1}{2} \cdot 2 \cdot 1=1
$$

b. Here's a sketch of the solid:

The volume is pretty easy to compute using either the washer or the shell method, but it's even faster if you remember that the volume of a cylinder of radius r and height h is $\pi r^{2} h$, and notice that this solid is a cylinder of radius 2 and height 1 with a cylinder of radius 1 and height 1 removed from it. It follows that the volume of the solid is $V=\pi 2^{2} \cdot 1-\pi 1^{2} \cdot 1=4 \pi-\pi=3 \pi$.
c. $\arctan (\theta)$ is an odd function, that is, $\arctan (-\theta)=-\arctan (\theta)$. It follows that

$$
\int_{-41 \pi}^{0} \arctan (\theta) d \theta=-\int_{0}^{41 \pi} \arctan (\theta) d \theta
$$

so

$$
\int_{-41 \pi}^{41 \pi} \arctan (\theta) d \theta=\int_{-41 \pi}^{0} \arctan (\theta) d \theta+\int_{0}^{41 \pi} \arctan (\theta) d \theta=0
$$

3. Do one (1) of \mathbf{a} or \mathbf{b}. [8]
a. Sketch the region between the curves $y=x^{3}-x$ and $y=\sin (\pi x)$, where $-1 \leq x \leq 1$, and find its area.
b. Sketch the solid obtained by revolving the region between $y=\frac{1}{x}$ and $y=1$, where $1 \leq x \leq 3$, about the line $x=-1$, and find its volume.
a. Cheating slightly, I used Maple to plot the curves:
```
> plot([[t,t^3-t,t=-1..1],[t,sin(Pi*t),t=-1..1]])
```


It's pretty clear from the plot that the curves intersect at $x=-1, x=0$, and $x=1$; for $-1<x<0, y=x^{3}-x$ is above $y=\sin (\pi x)$, and for $0<x<1, y=\sin (\pi x)$ is above $y=x^{3}-x$. (You will find all this out pretty quickly if you try to graph the curves by hand - it's not an accident the two curves intersect at their x-intercepts ... :-) It follows that the area of the region is:

$$
\begin{aligned}
A & =\int_{-1}^{0}\left[\left(x^{3}-x\right)-\sin (\pi x)\right] d x+\int_{0}^{1}\left[\sin (\pi x)-\left(x^{3}-x\right)\right] d x \\
& =\int_{-1}^{0}\left(x^{3}-x\right) d x-\int_{-1}^{0} \sin (\pi x) d x+\int_{0}^{1} \sin (\pi x) d x-\int_{0}^{1}\left(x^{3}-x\right) d x
\end{aligned}
$$

We'll substitute $u=\pi x$, so $d u=\pi d x$ and $\frac{1}{\pi} d u=d x$, in the middle integrals.

$$
=\left.\left(\frac{x^{4}}{4}-\frac{x^{2}}{2}\right)\right|_{-1} ^{0}-\int_{-\pi}^{0} \sin (u) \frac{1}{\pi} d u+\int_{0}^{\pi} \sin (u) \frac{1}{\pi} d u-\left.\left(\frac{x^{4}}{4}-\frac{x^{2}}{2}\right)\right|_{0} ^{1}
$$

$$
=0-\left(-\frac{1}{4}\right)-\left.\frac{1}{\pi}(-\cos (u))\right|_{-\pi} ^{0}+\left.\frac{1}{\pi}(-\cos (u))\right|_{0} ^{\pi}-\left(-\frac{1}{4}\right)+0
$$

$$
=\frac{1}{4}+\frac{1}{\pi}(\cos (0)-\cos (-\pi))-\frac{1}{\pi}(\cos (\pi)-\cos (0))+\frac{1}{4}
$$

$$
=\frac{1}{2}+\frac{1}{\pi}(1-(-1))-\frac{1}{\pi}((-1)-1)=\frac{1}{2}+\frac{4}{\pi}
$$

b. Here's a sketch of the solid obtained if one revolves the region about the line $x=-1$:

The volume of this solid is pretty easy to compute using either the washer or the cylindrical shell method. We'll use washers:

Since we revolved about a horizontal line and intend to use washers, we will use x as the basic variable. Observe that the washer at x has outer radius $R=1-(-1)=2$ and inner radius $r=\frac{1}{x}-(-1)=\frac{1}{x}+1$, so its area is

$$
A(x)=\pi R^{2}-\pi r^{2}=\pi\left(2^{2}-\left(\frac{1}{x}+1\right)^{2}\right)=\pi\left(4-\left(\frac{1}{x^{2}}-\frac{2}{x}+1\right)\right)=\pi\left(3+\frac{2}{x}-\frac{1}{x^{2}}\right) .
$$

The volume of the solid is therefore

$$
\begin{aligned}
V & =\int_{1}^{3} A(x) d x=\int_{1}^{3} \pi\left(3+\frac{2}{x}-\frac{1}{x^{2}}\right) d x=\pi \int_{1}^{3}\left(3+2 x^{-1}-x^{-2}\right) d x \\
& =\left.\pi\left(3 x+2 \ln (x)-\frac{x^{-1}}{-1}\right)\right|_{1} ^{3}=\left.\pi\left(3 x+2 \ln (x)+\frac{1}{x}\right)\right|_{1} ^{3} \\
& =\pi\left(3 \cdot 3+2 \ln (3)+\frac{1}{3}\right)-\pi\left(3 \cdot 1+2 \ln (1)+\frac{1}{1}\right) \\
& =\pi\left(9+2 \ln (3)+\frac{1}{3}\right)-\pi(4+2 \cdot 0) \\
& =\pi\left(5+\frac{1}{3}+2 \ln (3)\right)=\pi\left(\frac{16}{3}+2 \ln (3)\right)
\end{aligned}
$$

4. Do one (1) of \mathbf{a} or \mathbf{b}. [10]
a. Find the domain and any and all intercepts, horizontal and vertical asymptotes, local maxima and minima, and inflection points of $f(x)=e^{-x^{2}}$, and sketch its graph.
b. Max moves at $1 \mathrm{~km} / \mathrm{hr}$ along the positive x-axis towards the origin while aiming a laser pointer at the $(0,2)$ on the y-axis. How is the (smaller!) angle between the laser beam and the the x-axis changing at the instant that Max is at the point $(1,0)$ on the x-axis? (All distances along the axes are in kilometres. You may assume Max and the laser pointer occupy a single point at any given instant ... :-)
a. We run through the usual checklist:
i. Domain. $f(x)=e^{-x^{2}}$ makes sense for all x, so the domain is the entire real line. Note that since $f(x)$ is a composition of functions which are everywhere continuous, it is also continuous everywhere.
ii. Intercepts. $f(0)=e^{-0^{2}}=e^{0}=1$ so $f(x)=e^{-x^{2}}$ has y-intercept 1 . On the other hand, $e^{t}>0$ for every $t \in \mathbb{R}$, so $f(x)=e^{-x^{2}}>0$ for all x, and so there are no x-intercepts.
iii. Vertical asymptotes. Since $f(x)=e^{-x^{2}}$ is defined and continuous for all x, it has no vertical asymptotes.
iv. Horizontal asymptotes. We compute the limits in both directions:

$$
\begin{array}{ll}
\lim _{x \rightarrow-\infty} e^{-x^{2}}=0 & \text { since }-x^{2} \rightarrow-\infty \text { as } x \rightarrow-\infty \text { and } e^{t} \rightarrow 0 \text { as } t \rightarrow-\infty, \text { and } \\
\lim _{x \rightarrow+\infty} e^{-x^{2}}=0 & \text { since }-x^{2} \rightarrow-\infty \text { as } x \rightarrow+\infty \text { and } e^{t} \rightarrow 0 \text { as } t \rightarrow-\infty .
\end{array}
$$

Thus $f(x)=e^{-x^{2}}$ has the horizontal asymptote $y=0$ in both directions.
v. Maxima, minima, etc. First, $f^{\prime}(x)=\frac{d}{d x} e^{-x^{2}}=e^{-x^{2}} \frac{d}{d x}\left(-x^{2}\right)=-2 x e^{-x^{2}}$. Since, as observed in $i i$ above, $e^{-x^{2}}>0$ for all $x, f^{\prime}(x)=-2 x e^{-x^{2}}=0$ exactly when $x=0$. Note that it also follows that if $x<0, f^{\prime}(x)>0$, and that if $x>0, f^{\prime}(x)<0$. The usual table then amounts to:

$$
\begin{array}{cccc}
x & (-\infty, 0) & 0 & (0, \infty) \\
f^{\prime}(x) & + & 0 & - \\
f(x) & \uparrow & \max & \downarrow
\end{array}
$$

Thus $f(x)$ has a local maximum (of $f(0)=1$) at $x=0$ and has no local minimum. (A little reflection about the table above should convince you that this local maximum is also an absolute maximum of $f(x)$.)
vi. Curvature and inflection points. First,

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{d}{d x} f^{\prime}(x)=\frac{d}{d x}\left(-2 x e^{-x^{2}}\right)=-2\left(\frac{d}{d x} x\right) e^{-x^{2}}+(-2 x)\left(\frac{d}{d x} e^{-x^{2}}\right) \\
& =-2 e^{-x^{2}}+(-2 x)\left(-2 x e^{-x^{2}}\right)=\left(4 x^{2}-2\right) e^{-x^{2}} .
\end{aligned}
$$

Since, as observed in ii above, $e^{-x^{2}}>0$ for all $x, f^{\prime \prime}(x)=\left(4 x^{2}-2\right) e^{-x^{2}}=0$ exactly when $4 x^{2}-2=0$, i.e. when $x= \pm \frac{1}{\sqrt{2}}$. Note that it also follows that if $x^{2}<\frac{1}{2}$, i.e.
$-\frac{1}{\sqrt{2}}<x<\frac{1}{\sqrt{2}}$, then $f^{\prime \prime}(x)<0$, and that if $x^{2}>\frac{1}{2}$, i.e. $\left|\frac{1}{\sqrt{2}}\right|>0$, then $f^{\prime \prime}(x)>0$. The usual table then amounts to:

\[

\]

Thus $f(x)=e^{-x^{2}}$ has two inflection points, at $x=-\frac{1}{\sqrt{2}}$ and $x=\frac{1}{\sqrt{2}}$. It is concave down between them and concave up to either side.
vii. The graph. Cheating slightly, here is what Maple gives:
$>\operatorname{plot}\left(\exp \left(-x^{\wedge} 2\right), x=-5.5, y=-0.5 . .1 .5\right)$

All done!
b. A crude sketch of the set-up is on the right.

If x is Max's position on the x-axis at some instant, then $\frac{d x}{d t}=-1 k m / h r$ because Max is moving towards the origin from the right. The corresponding θ satisfies $\tan (\theta)=\frac{\text { opposite }}{\text { adjacent }}=\frac{2}{x}$, so $\theta=\arctan \left(\frac{2}{x}\right)$. It follows that at every instant

$1 \mathrm{~km} / \mathrm{hr}$

$$
\begin{aligned}
\frac{d \theta}{d t} & =\frac{d}{d t} \arctan \left(\frac{2}{x}\right)=\left[\frac{d}{d x} \arctan \left(\frac{2}{x}\right)\right] \cdot \frac{d x}{d t}=\left[\frac{1}{1+\left(\frac{2}{x}\right)^{2}} \cdot \frac{d}{d x}\left(\frac{2}{x}\right)\right] \cdot(-1) \\
& =-\left[\frac{1}{1+\frac{4}{x^{2}}} \cdot\left(-\frac{2}{x^{2}}\right)\right]=\frac{2}{x^{2}+4}
\end{aligned}
$$

Thus, when $x=1, \frac{d \theta}{d t}=\frac{2}{1^{2}+4}=\frac{2}{5}=0.4 \mathrm{rad} / \mathrm{hr}$, that is, the angle between the laser beam and the the x-axis is increasing at the rate of 0.4 radians per hour at the instant that Max is at $(0,1)$ on the x-axis. [Why radians per hour?]

$$
[\text { Total }=40]
$$

