TRENT UNIVERSITY

MATH 1101Y Test #2 Tuesday, 29 Wednesday, 30 January, 2013

Time: 50 minutes

Name:

STUDENT NUMBER:

Instructions

- Show all your work. Legibly, please!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator and an aid sheet.

1. Do any three (3) of **a**-**f**. $[12 = 3 \times 4 \text{ each}]$

a.
$$\int \frac{1}{\sqrt{4-x^2}} dx$$
 b. $\int_{-1}^{1} (y+1)^2 dy$ **c.** $\int \sec^2(w) \sqrt{\tan(w)} dw$
d. $\int_{0}^{1} te^t dt$ **e.** $\int \cos^3(x) dx$ **f.** $\int_{0}^{1} \frac{4}{1+x^2} dx$

a. We will use the trig substitution $x = 2\sin(\theta)$, so $dx = 2\cos(\theta) d\theta$ and $\theta = \arcsin\left(\frac{x}{2}\right)$.

$$\int \frac{1}{\sqrt{4 - x^2}} \, dx = \int \frac{1}{\sqrt{4 - 2^2 \sin^2(\theta)}} \, 2\cos(\theta) \, d\theta = \int \frac{2\cos(\theta)}{\sqrt{4\left(1 - \sin^2(\theta)\right)}} \, d\theta$$
$$= \int \frac{2\cos(\theta)}{\sqrt{4\cos^2(\theta)}} \, d\theta = \int \frac{2\cos(\theta)}{2\cos(\theta)} \, d\theta$$
$$= \int 1\theta = \theta + C = \arcsin\left(\frac{x}{2}\right) + C \quad \blacksquare$$

b. One could just expand the square and integrate away, but we'll do it using the substitution u = y + 1, so du = dy and $\begin{array}{c} y & -1 & 1 \\ u & 0 & 2 \end{array}$. Easier arithmetic this way ...

$$\int_{-1}^{1} (y+1)^2 \, dy = \int_{0}^{2} u^2 \, du = \left. \frac{u^3}{3} \right|_{0}^{2} = \frac{8}{3} - \frac{0}{3} = \frac{8}{3} \qquad \blacksquare$$

c. We'll use the substitution $s = \tan(w)$, so $ds = \sec^2(w) dw$.

$$\int \sec^2(w)\sqrt{\tan(w)} \, dw = \int \sqrt{s} \, ds = \int s^{1/2} \, ds = \frac{s^{3/2}}{3/2} + C$$
$$= \frac{2}{3}s^{3/2} + C = \frac{2}{3}\tan^{3/2}(w) + C \quad \blacksquare$$

d. We will ise integration by parts, with u = t and $v' = e^t$, so u' = 1 and $v = e^t$.

$$\int_0^1 te^t dt = \int_0^1 uv' dt = uv|_0^1 - \int_0^1 u'v dt = te^t|_0^1 - \int_0^1 1e^t dt$$
$$= (1e^1 - 0e^0) - e^t|_0^1 = e - (e^1 - e^0) = e - e + 1 = 1$$

e. This can be done with the help of the reduction formula for $\int \cos^k(x) dx$ or by using integration by parts, but the cheapest way is probably to use the trigonometric identity $\cos^2(x) = 1 - \sin^2(x)$ and the substitution $u = \sin(x)$, so $du = \cos(x) dx$.

$$\int \cos^3(x) \, dx = \int \cos^2(x) \cos(x) \, dx = \int \left(1 - \sin^2(x)\right) \cos(x) \, dx$$
$$= \int \left(1 - u^2\right) \, du = u - \frac{u^3}{3} + C = \sin(x) - \frac{1}{3} \sin^3(x) + C \qquad \blacksquare$$

f. We'll use the fact that $\frac{d}{dx} \arctan(x) = \frac{1}{1+x^2}$ in reverse.

$$\int_0^1 \frac{4}{1+x^2} \, dx = 4 \arctan(x) \big|_0^1 = 4 \arctan(1) - 4 \arctan(0) = 4 \cdot \frac{\pi}{4} - 4 \cdot 0 = \pi \qquad \blacksquare$$

- **2.** Do any two (2) of **a**–**c**. $[10 = 2 \times 5 \text{ each}]$
- **a.** Sketch the region whose area is computed by the integral $\int_{2}^{4} \left(\frac{x}{2}-1\right) dx$. Without evaluating the integral, what is its area?
- **b.** Sketch the solid obtained by revolving the region below y = 2 and above y = 1, for $0 \le x \le 1$, about the x-axis, and find its volume.
- **c.** Compute $\int_{-41\pi}^{41\pi} \arctan(\theta) \, d\theta$.
- **a.** Here's a sketch of the region:

Note that the line $y = \frac{x}{2} - 1$ has x-intercept x = 2 and has y = 1 at x = 4, so it is above the x-axis for $2 < x \le 4$. $\int_2^4 \left(\frac{x}{2} - 1\right) dx$ represents the area beneath this line and above the x-axis for $2 \le x \le 4$, but this region is just a triangle with base 2 and height 1. Thus

$$\int_{2}^{4} \left(\frac{x}{2} - 1\right) \, dx = \frac{1}{2} \cdot 2 \cdot 1 = 1 \, . \qquad \Box$$

b. Here's a sketch of the solid:

The volume is pretty easy to compute using either the washer or the shell method, but it's even faster if you remember that the volume of a cylinder of radius r and height h is $\pi r^2 h$, and notice that this solid is a cylinder of radius 2 and height 1 with a cylinder of radius 1 and height 1 removed from it. It follows that the volume of the solid is $V = \pi 2^2 \cdot 1 - \pi 1^2 \cdot 1 = 4\pi - \pi = 3\pi$.

c. $\arctan(\theta)$ is an odd function, that is, $\arctan(-\theta) = -\arctan(\theta)$. It follows that

$$\int_{-41\pi}^{0} \arctan(\theta) \, d\theta = -\int_{0}^{41\pi} \arctan(\theta) \, d\theta \,,$$

 \mathbf{SO}

$$\int_{-41\pi}^{41\pi} \arctan(\theta) \, d\theta = \int_{-41\pi}^{0} \arctan(\theta) \, d\theta + \int_{0}^{41\pi} \arctan(\theta) \, d\theta = 0 \,. \qquad \blacksquare$$

- **3.** Do one (1) of **a** or **b**. [8]
- **a.** Sketch the region between the curves $y = x^3 x$ and $y = \sin(\pi x)$, where $-1 \le x \le 1$, and find its area.
- **b.** Sketch the solid obtained by revolving the region between $y = \frac{1}{x}$ and y = 1, where $1 \le x \le 3$, about the line x = -1, and find its volume.
- a. Cheating slightly, I used Maple to plot the curves:
- > plot([[t,t^3-t,t=-1..1],[t,sin(Pi*t),t=-1..1]])

It's pretty clear from the plot that the curves intersect at x = -1, x = 0, and x = 1; for -1 < x < 0, $y = x^3 - x$ is above $y = \sin(\pi x)$, and for 0 < x < 1, $y = \sin(\pi x)$ is above $y = x^3 - x$. (You will find all this out pretty quickly if you try to graph the curves by hand – it's not an accident the two curves intersect at their *x*-intercepts ...:-) It follows that the area of the region is:

$$A = \int_{-1}^{0} \left[\left(x^3 - x \right) - \sin(\pi x) \right] \, dx + \int_{0}^{1} \left[\sin(\pi x) - \left(x^3 - x \right) \right] \, dx$$
$$= \int_{-1}^{0} \left(x^3 - x \right) \, dx - \int_{-1}^{0} \sin(\pi x) \, dx + \int_{0}^{1} \sin(\pi x) \, dx - \int_{0}^{1} \left(x^3 - x \right) \, dx$$

We'll substitute $u = \pi x$, so $du = \pi dx$ and $\frac{1}{\pi} du = dx$, in the middle integrals.

$$= \left(\frac{x^4}{4} - \frac{x^2}{2}\right)\Big|_{-1}^0 - \int_{-\pi}^0 \sin(u) \frac{1}{\pi} du + \int_0^\pi \sin(u) \frac{1}{\pi} du - \left(\frac{x^4}{4} - \frac{x^2}{2}\right)\Big|_0^1$$

$$= 0 - \left(-\frac{1}{4}\right) - \frac{1}{\pi} \left(-\cos(u)\right)\Big|_{-\pi}^0 + \frac{1}{\pi} \left(-\cos(u)\right)\Big|_0^\pi - \left(-\frac{1}{4}\right) + 0$$

$$= \frac{1}{4} + \frac{1}{\pi} \left(\cos(0) - \cos(-\pi)\right) - \frac{1}{\pi} \left(\cos(\pi) - \cos(0)\right) + \frac{1}{4}$$

$$= \frac{1}{2} + \frac{1}{\pi} \left(1 - (-1)\right) - \frac{1}{\pi} \left((-1) - 1\right) = \frac{1}{2} + \frac{4}{\pi} \quad \blacksquare$$

b. Here's a sketch of the solid obtained if one revolves the region about the line x = -1:

The volume of this solid is pretty easy to compute using either the washer or the cylindrical shell method. We'll use washers:

Since we revolved about a horizontal line and intend to use washers, we will use x as the basic variable. Observe that the washer at x has outer radius R = 1 - (-1) = 2 and inner radius $r = \frac{1}{x} - (-1) = \frac{1}{x} + 1$, so its area is

$$A(x) = \pi R^2 - \pi r^2 = \pi \left(2^2 - \left(\frac{1}{x} + 1\right)^2\right) = \pi \left(4 - \left(\frac{1}{x^2} - \frac{2}{x} + 1\right)\right) = \pi \left(3 + \frac{2}{x} - \frac{1}{x^2}\right).$$

The volume of the solid is therefore

$$V = \int_{1}^{3} A(x) \, dx = \int_{1}^{3} \pi \left(3 + \frac{2}{x} - \frac{1}{x^{2}} \right) \, dx = \pi \int_{1}^{3} \left(3 + 2x^{-1} - x^{-2} \right) \, dx$$
$$= \pi \left(3x + 2\ln(x) - \frac{x^{-1}}{-1} \right) \Big|_{1}^{3} = \pi \left(3x + 2\ln(x) + \frac{1}{x} \right) \Big|_{1}^{3}$$
$$= \pi \left(3 \cdot 3 + 2\ln(3) + \frac{1}{3} \right) - \pi \left(3 \cdot 1 + 2\ln(1) + \frac{1}{1} \right)$$
$$= \pi \left(9 + 2\ln(3) + \frac{1}{3} \right) - \pi \left(4 + 2 \cdot 0 \right)$$
$$= \pi \left(5 + \frac{1}{3} + 2\ln(3) \right) = \pi \left(\frac{16}{3} + 2\ln(3) \right) \quad \blacksquare$$

- **4.** Do one (1) of **a** or **b**. [10]
- **a.** Find the domain and any and all intercepts, horizontal and vertical asymptotes, local maxima and minima, and inflection points of $f(x) = e^{-x^2}$, and sketch its graph.
- **b.** Max moves at $1 \ km/hr$ along the positive x-axis towards the origin while aiming a laser pointer at the (0, 2) on the y-axis. How is the (smaller!) angle between the laser beam and the the x-axis changing at the instant that Max is at the point (1, 0) on the x-axis? (All distances along the axes are in kilometres. You may assume Max and the laser pointer occupy a single point at any given instant \dots :-)
- **a.** We run through the usual checklist:

i. Domain. $f(x) = e^{-x^2}$ makes sense for all x, so the domain is the entire real line. Note that since f(x) is a composition of functions which are everywhere continuous, it is also continuous everywhere. \Box

ii. Intercepts. $f(0) = e^{-0^2} = e^0 = 1$ so $f(x) = e^{-x^2}$ has y-intercept 1. On the other hand, $e^t > 0$ for every $t \in \mathbb{R}$, so $f(x) = e^{-x^2} > 0$ for all x, and so there are no x-intercepts. \Box *iii. Vertical asymptotes.* Since $f(x) = e^{-x^2}$ is defined and continuous for all x, it has no vertical asymptotes. \Box

iv. Horizontal asymptotes. We compute the limits in both directions:

$$\lim_{x \to -\infty} e^{-x^2} = 0 \quad \text{since } -x^2 \to -\infty \text{ as } x \to -\infty \text{ and } e^t \to 0 \text{ as } t \to -\infty, \text{ and}$$
$$\lim_{x \to +\infty} e^{-x^2} = 0 \quad \text{since } -x^2 \to -\infty \text{ as } x \to +\infty \text{ and } e^t \to 0 \text{ as } t \to -\infty.$$

Thus $f(x) = e^{-x^2}$ has the horizontal asymptote y = 0 in both directions. \Box v. Maxima, minima, etc. First, $f'(x) = \frac{d}{dx}e^{-x^2} = e^{-x^2}\frac{d}{dx}(-x^2) = -2xe^{-x^2}$. Since, as observed in *ii* above, $e^{-x^2} > 0$ for all $x, f'(x) = -2xe^{-x^2} = 0$ exactly when x = 0. Note that it also follows that if x < 0, f'(x) > 0, and that if x > 0, f'(x) < 0. The usual table then amounts to:

$$\begin{array}{ccccccc} x & (-\infty,0) & 0 & (0,\infty) \\ f'(x) & + & 0 & - \\ f(x) & \uparrow & \max & \downarrow \end{array}$$

Thus f(x) has a local maximum (of f(0) = 1) at x = 0 and has no local minimum. (A little reflection about the table above should convince you that this local maximum is also an absolute maximum of f(x).) \Box

vi. Curvature and inflection points. First,

$$f''(x) = \frac{d}{dx}f'(x) = \frac{d}{dx}\left(-2xe^{-x^2}\right) = -2\left(\frac{d}{dx}x\right)e^{-x^2} + (-2x)\left(\frac{d}{dx}e^{-x^2}\right)$$
$$= -2e^{-x^2} + (-2x)\left(-2xe^{-x^2}\right) = (4x^2 - 2)e^{-x^2}.$$

Since, as observed in *ii* above, $e^{-x^2} > 0$ for all x, $f''(x) = (4x^2 - 2)e^{-x^2} = 0$ exactly when $4x^2 - 2 = 0$, *i.e.* when $x = \pm \frac{1}{\sqrt{2}}$. Note that it also follows that if $x^2 < \frac{1}{2}$, *i.e.*

 $-\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}$, then f''(x) < 0, and that if $x^2 > \frac{1}{2}$, *i.e.* $\left|\frac{1}{\sqrt{2}}\right| > 0$, then f''(x) > 0. The usual table then amounts to:

Thus $f(x) = e^{-x^2}$ has two inflection points, at $x = -\frac{1}{\sqrt{2}}$ and $x = \frac{1}{\sqrt{2}}$. It is concave down between them and concave up to either side. \Box

vii. The graph. Cheating slightly, here is what Maple gives:

> plot(exp(-x²),x=-5..5,y=-0.5..1.5)

All done!

b. A crude sketch of the set-up is on the right.

If x is Max's position on the x-axis at some instant, then $\frac{dx}{dt} = -1 \ km/hr$ because Max is moving towards the origin from the right. The corresponding θ satisfies $\tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} = \frac{2}{x}$, so $\theta = \arctan\left(\frac{2}{x}\right)$. It follows that at every instant 1 km/hr

$$\frac{d\theta}{dt} = \frac{d}{dt}\arctan\left(\frac{2}{x}\right) = \left[\frac{d}{dx}\arctan\left(\frac{2}{x}\right)\right] \cdot \frac{dx}{dt} = \left[\frac{1}{1+\left(\frac{2}{x}\right)^2} \cdot \frac{d}{dx}\left(\frac{2}{x}\right)\right] \cdot (-1)$$
$$= -\left[\frac{1}{1+\frac{4}{x^2}} \cdot \left(-\frac{2}{x^2}\right)\right] = \frac{2}{x^2+4}.$$

Thus, when x = 1, $\frac{d\theta}{dt} = \frac{2}{1^2 + 4} = \frac{2}{5} = 0.4 \ rad/hr$, that is, the angle between the laser beam and the the x-axis is increasing at the rate of 0.4 radians per hour at the instant that Max is at (0, 1) on the x-axis. [Why radians per hour?]

$$|Total = 40|$$

A