Trent University

MATH 1101Y Test \#2

Tuesday, 29 Wednesday, 30 January, 2013
Time: 50 minutes

Instructions

- Show all your work. Legibly, please!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator and an aid sheet.

1. Do any three (3) of a-f. [12 $=3 \times 4$ each $]$
a. $\int \frac{1}{\sqrt{4-x^{2}}} d x$
b. $\int_{-1}^{1}(y+1)^{2} d y$
c. $\int \sec ^{2}(w) \sqrt{\tan (w)} d w$
d. $\int_{0}^{1} t e^{t} d t$
e. $\int \cos ^{3}(x) d x$
f. $\int_{0}^{1} \frac{4}{1+x^{2}} d x$
2. Do any two (2) of a-c. [10 $=2 \times 5$ each]
a. Sketch the region whose area is computed by the integral $\int_{2}^{4}\left(\frac{x}{2}-1\right) d x$. Without evaluating the integral, what is its area?
b. Sketch the solid obtained by revolving the region below $y=2$ and above $y=1$, for $0 \leq x \leq 1$, about the x-axis, and find its volume.
c. Compute $\int_{-41 \pi}^{41 \pi} \arctan (\theta) d \theta$.
3. Do one (1) of \mathbf{a} or \mathbf{b}. [8]
a. Sketch the region between the curves $y=x^{3}-x$ and $y=\sin (\pi x)$, where $-1 \leq x \leq 1$, and find its area.
b. Sketch the solid obtained by revolving the region between $y=\frac{1}{x}$ and $y=1$, where $1 \leq x \leq 3$, about the line $x=-1$, and find its volume.
4. Do one (1) of \mathbf{a} or \mathbf{b}. [10]
a. Find the domain and any and all intercepts, horizontal and vertical asymptotes, local maxima and minima, and inflection points of $f(x)=e^{-x^{2}}$, and sketch its graph.
b. Max moves at $1 \mathrm{~km} / \mathrm{hr}$ along the positive x-axis towards the origin while aiming a laser pointer at the $(0,2)$ on the y-axis. How is the (smaller!) angle between the laser beam and the the x-axis changing at the instant that Max is at the point $(1,0)$ on the x-axis? (All distances along the axes are in kilometres. You may assume Max and the laser pointer occupy a single point at any given instant ... :-)

$$
[\text { Total }=40]
$$

