Mathematics 1101Y – Calculus I: Functions and calculus of one variable TRENT UNIVERSITY, 2012–2013

Solutions to Assignment #4 Breaking limits

One of the things we've skipped over was the formal definition of limit, that is, how to pin down just what $\lim_{x \to a} f(x) = L$ really means. The usual definition of limits is something like:

 $\varepsilon - \delta$ DEFINITION OF LIMITS. $\lim_{x \to a} f(x) = L$ exactly when for every $\varepsilon > 0$ there is a $\delta > 0$ such that for any x with $|x - a| < \delta$ we are guaranteed to have $|f(x) - L| < \varepsilon$ as well.

Informally, this means that no matter how close – that's the ε – you want f(x) to get to L, you can make it happen by ensuring that x is close enough – that's the δ – to a. If this can always be done, $\lim_{x \to a} f(x) = L$; if not, then $\lim_{x \to a} f(x) \neq L$.

This definition works, but most people find it a little hard to understand and use at first. Here is less common definition equivalent to the one above that is cast in terms of a game:

LIMIT GAME DEFINITION OF LIMITS. The *limit game* for f(x) at x = a with target L is a three-move game played between two players A and B as follows:

- 1. A moves first, picking a small number $\varepsilon > 0$.
- 2. B moves second, picking another small number $\delta > 0$.
- 3. A moves third, picking an x that is within δ of a, *i.e.* $a \delta < x < a + \delta$.

To determine the winner, we evaluate f(x). If it is within ε of the target L, *i.e.* $L - \varepsilon < f(x) < L + \varepsilon$, then player B wins; if not, then player A wins.

With this idea in hand $\lim_{x\to a} f(x) = L$ means that player *B* has a winning strategy in the limit game for f(x) at x = a with target *L*; that is, if *B* plays it right, *B* will win no matter what *A* tries to do. (At least within the rules ...:-) Conversely, $\lim_{x\to a} f(x) \neq L$ means that player *A* is the one with a winning strategy in the limit game for f(x) at x = a with target *L*.

Your task in this assignment, should you choose to accept it, is to find such winning strategies:

1. Describe a winning strategy for B in the limit game for f(x) = 3x - 2 at x = 2 with target 4. Note that no matter what number εA plays first, B must have a way to find a δ to play that will make it impossible for A to play an x that wins for A on the third move. [3]

SOLUTION. Whatever $\varepsilon > 0$ A may play, B will win by responding with $\delta = \frac{\varepsilon}{3}$. (Any positive δ which is even smaller will also work.) No matter what x A chooses with $|x-2| < \delta = \frac{\varepsilon}{3}$, we have

$$|f(x) - 4| = |(3x - 2) - 4| = |3x - 6| = 3|x - 2| < 3\delta = 3\frac{\varepsilon}{3} = \varepsilon,$$

so B wins.

NOTE: How does one get $\delta = \varepsilon/3$? By reverse-engineering the δ from the desired conclusion, $|f(x) - 4| < \varepsilon$:

$$|f(x) - 4| < \varepsilon \iff |(3x - 2) - 4| < \varepsilon \iff |3x - 6| < \varepsilon \iff 3|x - 2| < \varepsilon \iff |x - 2| < \frac{\varepsilon}{3} \qquad \blacksquare$$

2. Describe a winning strategy for A in the limit game for f(x) = 3x - 2 at x = 2 with target 5. Note that A must pick an ε on the first move so that no matter what δ B tries to play on the second move, A can still find an x to play on move three that wins for A. [3] SOLUTION. For the first move, let A play $\varepsilon = \frac{1}{2}$. (Any positive $\varepsilon \leq 1$ will also work.) No matter what $\delta > 0$ B plays in response, A can respond in turn with any x such that $2 - \delta < x < 2$. Since

$$x < 2 \implies f(x) = 3x - 2 < 3 \cdot 2 - 2 = 4 < 4.5 = 5 - \frac{1}{2} = 5 - \varepsilon$$

so $|f(x) - 5| \ge \frac{1}{2} = \varepsilon$, which means that A wins.

NOTE: How does one figure out what ε to pick to begin with? You need one that is small enough to separate the target, 5, from where the function is really going, f(2) = 4. That is, any ε that is less than the distance between these two numbers, 5-4=1, will do. (Now, why does $\varepsilon = 1$ still – barely – do the job?)

- **3.** Use either definition of limits above to verify that $\lim_{x \to 1} (x^2 + x + 1) = 3$. [4]
 - *Hint*: The choice of δ will probably require some slightly indirect reasoning. Pick some arbitrary smallish positive number, say 0.5, for δ as a first cut. If it doesn't do the job, but x is at least that close, you'll have some more information to help pin down the δ you really need.

SOLUTION. As in the note after the solution to problem 1, we will attempt to reverse-engineer the $\delta > 0$ required:

$$|f(x) - L| < \varepsilon \iff |(x^2 + x + 1) - 3| < \varepsilon \iff |x^2 + x - 2| < \varepsilon$$
$$\Leftrightarrow |(x + 2)(x - 1)| < \varepsilon \iff |x - 1| < \frac{\varepsilon}{|x + 2|}$$

The problem is that δ may not depend on x. (Recall that A plays x after B plays δ .) Following the hint, we get around this problem by accepting no δ greater than 0.5. (Any number that is less than the distance between x = 1 and x = -2 will do, actually.) This lets us put bounds around |x+2| and so replace it with a constant in $\frac{\varepsilon}{|x+2|}$ above. If $|x-1| < \delta \le 0.5$, then

$$\begin{array}{rl} -0.5 < x-1 < 0.5 \ \Leftrightarrow \ 0.5 = -0.5 + 1 < x = x - 1 + 1 < 0.5 + 1 = 1.5 \\ \Leftrightarrow \ 2.5 = 0.5 + 2 < x + 2 < 1.5 + 2 = 3.5 \\ \Leftrightarrow \ \frac{2}{5} = \frac{1}{2.5} > \frac{1}{x+2} > \frac{1}{3.5} = \frac{2}{7} \,. \end{array}$$

Note that it also follows that if $|x - 1| < \delta \le 0.5$, then x + 2 > 0 and so |x + 2| = x + 2. Thus, if $|x - 1| < \delta \le 0.5$, we have $|x - 1| < \frac{2\varepsilon}{5} < \frac{\varepsilon}{|x + 2|}$. It follows that if we let $\delta = \min\left(0.5, \frac{2\varepsilon}{5}\right)$, the lesser of 0.5 and $\frac{2\varepsilon}{3}$, then no matter what x is chosen that satisfies $|x - 1| < \delta$, we get that $\delta \le 0.5$, and so

$$|x-1| < \min\left(0.5, \frac{2\varepsilon}{5}\right) \le \frac{2\varepsilon}{5} < \frac{\varepsilon}{|x+2|} \implies |(x+2)(x-1)| < \varepsilon$$
$$\implies |x^2 + x - 2| < \varepsilon$$
$$\implies |(x^2 + x + 1) - 3| < \varepsilon,$$

as required to show that $\lim_{x \to 1} (x^2 + x + 1) = 3$.