Mathematics 1101Y - Calculus I: Functions and calculus of one variable Trent University, 2012-2013

Solutions to Assignment \#4

Breaking limits

One of the things we've skipped over was the formal definition of limit, that is, how to pin down just what $\lim _{x \rightarrow a} f(x)=L$ really means. The usual definition of limits is something like:
$\varepsilon-\delta$ Definition of limits. $\lim _{x \rightarrow a} f(x)=L$ exactly when for every $\varepsilon>0$ there is a $\delta>0$ such that for any x with $|x-a|<\delta$ we are guaranteed to have $|f(x)-L|<\varepsilon$ as well.
Informally, this means that no matter how close - that's the ε - you want $f(x)$ to get to L, you can make it happen by ensuring that x is close enough - that's the δ - to a. If this can always be done, $\lim _{x \rightarrow a} f(x)=L$; if not, then $\lim _{x \rightarrow a} f(x) \neq L$.

This definition works, but most people find it a little hard to understand and use at first. Here is less common definition equivalent to the one above that is cast in terms of a game:

Limit game definition of limits. The limit game for $f(x)$ at $x=a$ with target L is a three-move game played between two players A and B as follows:

1. A moves first, picking a small number $\varepsilon>0$.
2. B moves second, picking another small number $\delta>0$.
3. A moves third, picking an x that is within δ of a, i.e. $a-\delta<x<a+\delta$.

To determine the winner, we evaluate $f(x)$. If it is within ε of the target L, i.e. $L-\varepsilon<$ $f(x)<L+\varepsilon$, then player B wins; if not, then player A wins.

With this idea in hand $\lim _{x \rightarrow a} f(x)=L$ means that player B has a winning strategy in the limit game for $f(x)$ at $x=a$ with target L; that is, if B plays it right, B will win no matter what A tries to do. (At least within the rules ...:-) Conversely, $\lim _{x \rightarrow a} f(x) \neq L$ means that player A is the one with a winning strategy in the limit game for $f(x)$ at $x=a$ with target L.
Your task in this assignment, should you choose to accept it, is to find such winning strategies:

1. Describe a winning strategy for B in the limit game for $f(x)=3 x-2$ at $x=2$ with target 4 . Note that no matter what number εA plays first, B must have a way to find a δ to play that will make it impossible for A to play an x that wins for A on the third move. [3]
Solution. Whatever $\varepsilon>0 A$ may play, B will win by responding with $\delta=\frac{\varepsilon}{3}$. (Any positive δ which is even smaller will also work.) No matter what $x A$ chooses with $|x-2|<\delta=\frac{\varepsilon}{3}$, we have

$$
|f(x)-4|=|(3 x-2)-4|=|3 x-6|=3|x-2|<3 \delta=3 \frac{\varepsilon}{3}=\varepsilon,
$$

so B wins.
Note: How does one get $\delta=\varepsilon / 3$? By reverse-engineering the δ from the desired conclusion, $|f(x)-4|<\varepsilon$:

$$
|f(x)-4|<\varepsilon \Leftrightarrow|(3 x-2)-4|<\varepsilon \Leftrightarrow|3 x-6|<\varepsilon \Leftrightarrow 3|x-2|<\varepsilon \Leftrightarrow|x-2|<\frac{\varepsilon}{3}
$$

2. Describe a winning strategy for A in the limit game for $f(x)=3 x-2$ at $x=2$ with target 5 . Note that A must pick an ε on the first move so that no matter what δB tries to play on the second move, A can still find an x to play on move three that wins for A. [3]

Solution. For the first move, let A play $\varepsilon=\frac{1}{2}$. (Any positive $\varepsilon \leq 1$ will also work.) No matter what $\delta>0 B$ plays in response, A can respond in turn with any x such that $2-\delta<x<2$. Since

$$
x<2 \Longrightarrow f(x)=3 x-2<3 \cdot 2-2=4<4.5=5-\frac{1}{2}=5-\varepsilon
$$

so $|f(x)-5| \geq \frac{1}{2}=\varepsilon$, which means that A wins.
Note: How does one figure out what ε to pick to begin with? You need one that is small enough to separate the target, 5 , from where the function is really going, $f(2)=4$. That is, any ε that is less than the distance between these two numbers, $5-4=1$, will do. (Now, why does $\varepsilon=1$ still barely - do the job?)
3. Use either definition of limits above to verify that $\lim _{x \rightarrow 1}\left(x^{2}+x+1\right)=3$. [4]

Hint: The choice of δ will probably require some slightly indirect reasoning. Pick some arbitrary smallish positive number, say 0.5 , for δ as a first cut. If it doesn't do the job, but x is at least that close, you'll have some more information to help pin down the δ you really need.

Solution. As in the note after the solution to problem 1, we will attempt to reverse-engineer the $\delta>0$ required:

$$
\begin{aligned}
|f(x)-L|<\varepsilon & \Leftrightarrow\left|\left(x^{2}+x+1\right)-3\right|<\varepsilon \Leftrightarrow\left|x^{2}+x-2\right|<\varepsilon \\
& \Leftrightarrow|(x+2)(x-1)|<\varepsilon \Leftrightarrow|x-1|<\frac{\varepsilon}{|x+2|}
\end{aligned}
$$

The problem is that δ may not depend on x. (Recall that A plays x after B plays δ.) Following the hint, we get around this problem by accepting no δ greater than 0.5 . (Any number that is less than the distance between $x=1$ and $x=-2$ will do, actually.) This lets us put bounds around $|x+2|$ and so replace it with a constant in $\frac{\varepsilon}{|x+2|}$ above. If $|x-1|<\delta \leq 0.5$, then

$$
\begin{aligned}
-0.5<x-1<0.5 & \Leftrightarrow 0.5=-0.5+1<x=x-1+1<0.5+1=1.5 \\
& \Leftrightarrow 2.5=0.5+2<x+2<1.5+2=3.5 \\
& \Leftrightarrow \frac{2}{5}=\frac{1}{2.5}>\frac{1}{x+2}>\frac{1}{3.5}=\frac{2}{7} .
\end{aligned}
$$

Note that it also follows that if $|x-1|<\delta \leq 0.5$, then $x+2>0$ and so $|x+2|=x+2$. Thus, if $|x-1|<\delta \leq 0.5$, we have $|x-1|<\frac{2 \varepsilon}{5}<\frac{\varepsilon}{|x+2|}$.

It follows that if we let $\delta=\min \left(0.5, \frac{2 \varepsilon}{5}\right)$, the lesser of 0.5 and $\frac{2 \varepsilon}{3}$, then no matter what x is chosen that satisfies $|x-1|<\delta$, we get that $\delta \leq 0.5$, and so

$$
\begin{aligned}
|x-1|<\min \left(0.5, \frac{2 \varepsilon}{5}\right) \leq \frac{2 \varepsilon}{5}<\frac{\varepsilon}{|x+2|} & \Rightarrow|(x+2)(x-1)|<\varepsilon \\
& \Rightarrow\left|x^{2}+x-2\right|<\varepsilon \\
& \Rightarrow\left|\left(x^{2}+x+1\right)-3\right|<\varepsilon
\end{aligned}
$$

as required to show that $\lim _{x \rightarrow 1}\left(x^{2}+x+1\right)=3$.

