Mathematics 1101Y – Calculus I: Functions and calculus of one variable TRENT UNIVERSITY, 2012–2013

Quizzes

Quiz #0. Friday, 14 September, 2012. [15 minutes]

Mathematicians in medieval India traditionally wrote up much of their work in verse. The problem below was posed by Bhaskara (c. 1114-1185 A.D.) in a book dedicated to his daughter Lilavati:

The square root of half the number of bees in a swarm Has flown out upon a jasmine bush; Eight ninths of the swarm has remained behind; And a female bee flies about a male who is buzzing inside a lotus flower; In the night, allured by the flower's sweet odour, he went inside it And now he is trapped! Tell me, most enchanting lady, the number of bees.

1. Restate the problem given above as an equation. [5]

Bonus. Solve the equation you obtained in your solution to $\mathbf{1}$. [1]

NOTE: For those interested in the history of mathematics, Bhaskara developed a number of techniques that anticipated portions of both differential and integral calculus. The translation given above of Bhaskara's problem is taken from *The Heritage of Thales*, by W.S. Anglin & J. Lambeck, Springer Verlag, New York, 1995, ISBN 0-387-94544-X, p. 113. Just in case you look up Bhaskara, there was also an earlier (*c.* 600-680 A.D.) notable Indian mathematician with the same name. They sometimes end up being numbered to distinguish them.

Quiz #1. Friday, 21 September, 2012. [10 minutes]

Consider the parabola $y = x^2 + 4x - 5$.

- 1. Find the x-intercepts of the parabola. [2]
- 2. Find the coordinates of the vertex of the parabola. [2]
- 3. Sketch the graph of the parabola. /1/

Quiz #2. Friday, 28 September, 2012. [10 minutes]

1. Find the inverse function, as best you can, of $f(x) = \frac{2e^x}{e^x + 1}$. [5]

Quiz #3. Friday, 5 October, 2012. [10 minutes]

1. Compute $\lim_{x \to 1} \frac{x^4 - 1}{x - 1}$. [5]

Quiz #4. Friday, 12 October, 2012. [10 minutes]

1. Compute $\lim_{x \to \infty} \frac{x^2}{(3x+1)^2}$. [5]

Quiz #5. Friday, 2 November, 2012. [10 minutes]

1. Compute $\frac{d}{dx}\left(\frac{\cos^2(x)}{e^x}\right)$. [5]

Quiz #6. Friday, 9 November, 2012. [15 minutes]

1. Elvis and Solovey start running from the origin at the same time. Elvis runs up the y-axis at 8 m/s and Solovey runs right along the x-axis at 6 m/s. How is the area of the triangle whose corners are the origin, Elvis, and Solovey, changing 2 s after the start? [5]

Note: Just in case, the area of triangle with base b and height h is $\frac{1}{2}bh$.

Quiz #7. Friday, 16 November, 2012. [15 minutes]

1. Find the domain and all the intercepts, vertical and horizontal asymptotes, maximum and minimum points, and points of inflection of $f(x) = xe^{-x}$ and sketch its graph using this information. [5]

Quiz #8. Friday, 23 November, 2012. [10 minutes]

1. Find the maximum and minimum values of $f(x) = x^3 - 2x^2 + x$ on the interval [-1, 1]. [5]

Quiz #9. Friday, 30 November, 2012. [10 minutes]

Do one (1) of questions 1 or 2 below.

- 1. Find the maximum area of a right triangle whose hypotenuse has length $\sqrt{8} m$. [5]
- 2. Compute $\int_0^{\pi/4} \cos(2x) \, dx$. [5]

Quiz #10. Wednesday, 5 December, 2012. [10 minutes]

1. Compute
$$\int 26x^{12} \ln(x) \, dx$$
. [5]

r

Quiz #11. Friday, 11 January, 2013. [10 minutes]

1. Find the area between the curves $y = x \ln(x)$ and y = x for $1 \le x \le e$. [5]

Quiz #12. Friday, 18 January, 2013. [12 minutes]

Consider the solid obtained by revolving the region between $y = \sqrt{x}$ and $y = x^2$, for $0 \le x \le 1$, about the x-axis.

1. Sketch this solid and find its volume. [5]

Quiz #13. Friday, 25 January, 2013. [12 minutes]

Consider the solid obtained by revolving the region between $y = e^x$ and y = e, for $0 \le x \le 1$, about the y-axis.

1. Sketch this solid and find its volume. [5]

Quiz #14. Friday, 8 February, 2013. [12 minutes]

1. Compute $\int \frac{2}{x^3 - x} dx$. [5]

Quiz #15. Friday, 15 February, 2013. [25 minutes]

1. Compute
$$\int_0^\infty \frac{x^2 + 3x + 3}{(x+1)(x^2 + 2x + 2)} dx.$$
 [5]

Quiz #16. Friday, 1 March, 2013. [15 minutes]

Do one (1) of questions 1 or 2 below.

- 1. Find the arc-length of the curve $y = \frac{x^2}{2}$ for $0 \le x \le 1$. [5]
- 2. Find the area of the surface obtained by revolving the curve $y = \frac{x^2}{2}$ for $0 \le x \le 1$ about the *y*-axis. [5]
- Quiz #17. Friday, 8 March, 2013. [15 minutes]Do one (1) of questions 1 or 2 below.
 - 1. Find the arc-length of the polar curve $r = e^{\theta}$ for $0 \le \theta \le \ln(2)$. [5]
 - 2. Find the area of the region between the origin and the polar curve $r = e^{\theta}$ for $0 \le \theta \le \ln(2)$. [5]

Quiz #18. Friday, 15 March, 2013. [10 minutes]

1. Determine whether the series $\sum_{n=0}^{\infty} \frac{1}{2^n + n}$ converges or diverges. [5]

Quiz #19. Friday, 22 March, 2013. [10 minutes]

1. Determine whether the series $\sum_{n=0}^{\infty} \frac{2^n e^n}{n! 3^n}$ converges or diverges. [5]

Quiz #20. Thursday, 28 March, 2013. [10 minutes]

1. Determine for which values of x the power series $\sum_{n=0}^{\infty} \frac{nx^n}{5^n}$ converges and for which it diverges. [5]

Quiz #21. Friday, 5 April, 2013. [15 minutes]

1. Find the Taylor series at 0 of $f(x) = \frac{x}{1+x} - 1$ and find its radius of convergence. [5]