
Mathematics 1101Y – Calculus I: Functions and calculus of one variable
Trent University, 2012–2013

Solutions to the Quizzes

Quiz #0. Friday, 14 September, 2012. [15 minutes]

Mathematicians in medieval India traditionally wrote up much of their work in verse.
The problem below was posed by Bhaskara (c. 1114-1185 a.d.) in a book dedicated to his
daughter Lilavati:

The square root of half the number of bees in a swarm
Has flown out upon a jasmine bush;
Eight ninths of the swarm has remained behind;
And a female bee flies about a male who is buzzing inside a lotus flower;
In the night, allured by the flower’s sweet odour, he went inside it
And now he is trapped!
Tell me, most enchanting lady, the number of bees.

1. Restate the problem given above as an equation. [5]

Bonus. Solve the equation you obtained in your solution to 1. [1]

Note: For those interested in the history of mathematics, Bhaskara developed a number
of techniques that anticipated portions of both differential and integral calculus. The
translation given above of Bhaskara’s problem is taken from The Heritage of Thales, by
W.S. Anglin & J. Lambeck, Springer Verlag, New York, 1995, ISBN 0-387-94544-X, p. 113.
Just in case you look up Bhaskara, there was also an earlier (c. 600-680 a.d.) notable
Indian mathematician with the same name. They sometimes end up being numbered to
distinguish them.

Solution to 1. If x is the total number of bees in the swarm, the problem tells us that√
x
2 of them have flown to the jasmine bush, 8

9x have remained behind, and 2 more are in
or around the lotus flower. Thus

x =
√
x

2
+

8
9
x+ 2

is the equation given in the problem. �

Solution i to the Bonus question. Here goes! We first rearrange the equation to
help isolate and get rid of the square root, and then eliminate all the fractions among the
coefficients:

x =
√
x

2
+

8
9
x+ 2 =⇒

√
x

2
=

1
9
x− 2 =⇒ x

2
=
(

1
9
x− 2

)2

=
1
81
x2 − 4

9
x+ 4

=⇒ 1
81
x2 − 17

18
x+ 4 = 0 =⇒ 2x2 − 153x+ 648 = 0
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. . . and then solve the resulting quadratic equation using the quadratic formula:

x =
−(−153)±

√
(−153)2 − 4 · 2 · 648
2 · 2

=
153±

√
23409− 5184

4

=
153±

√
18225

4
=

153± 135
4

= 288/4
or 18/4 = 72

or 9/2

Thus x, the number of bees in the swarm, is either 72 or 9
2 . Bhaskara didn’t allow for

fractional bees . . . �

Note. Bhaskara’s problem has something to do – kind of, sort of – with a Monty Python
sketch: the 1972 album Monty Python’s Previous Record includes the song Eric the Half-
a-bee, where it concludes a variant of their classic Fish License sketch. You can find the
song on YouTube at:

http://www.youtube.com/watch?v=MlrsqGal64w

This song includes the immortal line, “For half a bee, philosophically, must ipso facto half
not be.” Some of the group had, it seems, studied philosophy . . .

Solution ii to the Bonus question. Once more, with Maple! The basic tool used
here is Maple’s solve command, which has many options and variations.

Plugging the original equation into Maple gives:
> solve(x=sqrt(x/2)+8*x/9+2,x);

72

That is, x = 72 is the solution to the equation described by Bhaskara.
On the other hand, plugging the equivalent quadratic equation into Maple gives:

> solve(2*x^2-153*x+648-0,x);

9
2
, 72

That is, x = 9
2 and x = 72 are the two solutions of the quadratic equation we obtained

and then solved in 2. Why doesn’t Maple give 9
2 as a solution of the original equation?

Beats me! �
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Quiz #1. Friday, 21 September, 2012. [10 minutes]

Consider the parabola y = x2 + 4x− 5.

1. Find the x-intercepts of the parabola. [2]
2. Find the coordinates of the vertex of the parabola. [2]
3. Sketch the graph of the parabola. [1]

Solution to 1. The x-intercepts occur when y = 0, so we need to find the roots of
x2 + 4x− 5.

One way to do this is to factor x2 + 4x − 5; however you do so, you should get
x2 + 4x− 5 = (x+ 5)(x− 1). It then follows that the roots are x = −5 (so x+ 5 = 0) and
x = 1 (so x− 1 = 0).

The other major way to get the job done is to use the quadratic formula: x2+4x−5 = 0
when

x =
−4±

√
42 − 4 · 1 · (−5)

2 · 1
=
−4±

√
16 + 20

2

=
−4±

√
36

2
=
−4± 6

2
= −2± 3 = 1 or −5 . �

Solution to 2. One way to locate the vertex in this case is to observe that it must occur
halfway between the roots, at x = −2, and get the y-coordinate by plugging x = −2 into
the equation of the parabola: y = (−2)2 + 4(−2)− 5 = 4− 8− 5 = −9.

Another way is to complete the square in the equation of the parabola:

x2 + 4x− 5 =
[
x2 + 4x

]
− 5 =

[(
x+

4
2

)2

−
(

4
2

)2
]
− 5 = (x+ 2)2 − 9 = (x− (−2))2 − 9

It follows that the vertex of the parabola is at (−2,−9). �

Solution to 3. I cheated and asked a Maple to do the job for me:
> plot(x^2+4x-5,x=-7..3)

�
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Quiz #2. Friday, 28 September, 2012. [10 minutes]

1. Find the inverse function, as best you can, of f(x) =
2ex

ex + 1
. [5]

Solution. As usual, we’ll set x = f(y) and try to solve for y:

x = f(y) =
2ey

ey + 1
=⇒ x (ey + 1) = 2ey =⇒ xey + x− 2ey = 0

=⇒ (x− 2)ey + x = 0 =⇒ (x− 2)ey = −x

=⇒ ey =
−x
x− 2

=
x

2− x

=⇒ y = ln
(

x

2− x

)
= ln(x)− ln(2− x)

Thus f−x(x) = ln
(

x

2− x

)
= ln(x)− ln(2− x).

That’s enough for a complete solution, but for those who worry about domains, note
that ln(x)− ln(2− x) makes sense whenever both x > 0 and 2− x > 0, i.e. 0 < x < 2. By

contrast, ln
(

x

2− x

)
makes sense when x

2−x > 0, which happens when either both x > 0

and 2 − x > 0, i.e. 0 < x < 2, or when both x < 0 and 2 − x < 0, i.e. 2 < x < 0, which
last doesn’t happen for all that many x’s . . . �

Quiz #3. Friday, 5 October, 2012. [10 minutes]

1. Compute lim
x→1

x4 − 1
x− 1

. [5]

Solution. Note that both the numerator and denominator approach 0 as x approaches
1. The key to this problem is the fact that the numerator factors as follows:

x4 − 1 =
(
x2
)2 − 12 =

(
x2 − 1

) (
x2 + 1

)
= (x− 1)(x+ 1)

(
x2 + 1

)
Thus

lim
x→1

x4 − 1
x− 1

= lim
x→1

(x− 1)(x+ 1)
(
x2 + 1

)
x− 1

= lim
x→1

(x+ 1)
(
x2 + 1

)
= (1 + 1)

(
12 + 1

)
= 2 · 2 = 4 �

Alternative methods. If one didn’t spot the repeated difference of squares gimmick
used to factor the numerator above, one could divide x− 1 into x4 − 1 using long division
instead. One could also take advantage of the fact that both numerator and denominator
approach 0 and use l’Hôpital’s Rule. (Of course, this does require a little knowledge of
differentiation.)
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Quiz #4. Friday, 12 October, 2012. [10 minutes]

1. Compute lim
x→∞

x2

(3x+ 1)2
. [5]

Solution. Here goes:

lim
x→∞

x2

(3x+ 1)2
= lim
x→∞

x2

9x2 + 6x+ 1
= lim
x→∞

x2

9x2 + 6x+ 1
·

1
x2

1
x2

= lim
x→∞

1
9 + 6

x + 1
x2

=
1

9 + 0 + 0
=

1
9
,

since 6
x → 0 and 1

x2 → 0 as x→∞. �

Quiz #5. Friday, 2 November, 2012. [10 minutes]

1. Compute
d

dx

(
cos2(x)
ex

)
. [5]

Solution. We will use the Quotient, Power, and Chain Rules:

d

dx

(
cos2(x)
ex

)
=

(
d
dx cos2(x)

)
· ex − cos2(x) ·

(
d
dxe

x
)

(ex)2

=

(
2 cos(x) ·

[
d
dx cos(x)

])
· ex − cos2(x) · ex

(ex)2

=
(2 cos(x) · [− sin(x)]) · ex − cos2(x) · ex

(ex)2

=
−2ex cos(x) sin(x)− ex cos2(x)

(ex)2

=
−2 cos(x) sin(x)− cos2(x)

ex

= −e−x cos(x) [2 sin(x) + cos(x)]

There are, of course, many other ways to get the job done – e.g. rewrite
cos2(x)
ex

as

e−x cos2(x) first and then use the Product Rule instead of the Quotient Rule – as well as
many ways in which the final answer may be written. �
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Quiz #6. Friday, 9 November, 2012. [15 minutes]

1. Elvis and Solovey start running from the origin at the same time. Elvis runs up the
y-axis at 8 m/s and Solovey runs right along the x-axis at 6 m/s. How is the area of
the triangle whose corners are the origin, Elvis, and Solovey, changing 2 s after the
start? [5]

Note: Just in case, the area of triangle with base b and height h is 1
2bh.

Solution. Suppose that we think of the side of the triangle along the x-axis as the base
and the side along the y-axis as the height. (The axes meet at right angles!)

b

h

Then we have
dh

dt
= 8 m/s and

db

dt
= 6 m/s, and it should be pretty obvious that

after 2 s we must have h = 8 · 2 = 16 m and b = 6 · 2 = 12 m. It follows, with a bit of help
from the Product Rule, that

dA

dt

∣∣∣∣
t=2

=
d

dt

(
1
2
bh

)
=

1
2

([
db

dt

]
· h+ b ·

[
dh

dt

])
=

1
2

(6 · 16 + 12 · 8) =
1
2

(96 + 96) = 96 m2/s . �

Quiz #7. Friday, 16 November, 2012. [15 minutes]

1. Find the domain and all the intercepts, vertical and horizontal asymptotes, maximum
and minimum points, and points of inflection of f(x) = xe−x and sketch its graph
using this information. [5]

Solution. We run through the usual checklist:

i. Domain. f(x) = xe−x is obviously defined for all x and is continuous everywhere it is
defined because it is the composition and product of everywhere continuous functions.

ii. Intercepts. f(0) = 0e−0 = 0 · 1 = 0 so f(x) has a y-intercept of 0.
f(x) = xe−x = 0 exactly when x = 0 (since e−x > 0 for all x), so the y-intercept is

also the only x-intercept in this case.

iii. Vertical asymptotes. Since f(x) is defined and continuous for all x, it does not have
any vertical asymptotes.
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iv. Horizontal asymptotes. We check the relevant limits in both directions:

lim
x→−∞

xe−x = lim
x→−∞

x

ex
→ −∞
→ 0+ = −∞

lim
x→+∞

xe−x = lim
x→+∞

x

ex
→ +∞
→ +∞ = lim

x→+∞

d
dxx
d
dxe

x
(using l’Hôpital’s Rule)

= lim
x→+∞

1
ex
→ 1
→ +∞ = 0+

It follows that we have a horizontal asymptote of y = 0 in the positive direction only.
v. Increase/decrease, etc. First, a little of the Product and Chain Rules:

f ′(x) =
d

dx

(
xe−x

)
=
(
d

dx
x

)
e−x + x

(
d

dx
e−x

)
= 1e−x + xe−x · d

dx
(−x) = e−x + xe−x(−1) = (1− x)e−x

Since e−x > 0 for all x, f ′(x) = 0 precisely when 1− x = 0, i.e. when x = 1. When
x > 1, 1 − x < 0, and hence f ′(x) < 0 and so f(x) is decreasing, and when x < 1,
1 − x > 0, and hence f ′(x) > 0 and so f(x) is increasing. It follows that the critical
point at x = 1 gives a (local) maximum of f(x).
The usual table summarizing all this:

x (−∞, 1) 1 (1,∞)
f ′(x) + 0 −
f(x) ↑ max ↓

vi. Curvature, etc. First, a little more of the Product and Chain Rules:

f ′′(x) =
d

dx

(
(1− x)e−x

)
=
(
d

dx
(1− x)

)
e−x + (1− x)

(
d

dx
e−x

)
= (−1)e−x + (1− x)e−x · d

dx
(−x) = −e−x + (1− x)e−x(−1) = (x− 2)e−x

Since e−x > 0 for all x, f ′′(x) = 0 precisely when x− 2 = 0, i.e. when x = 2. When
x > 2, x − 2 > 0, and hence f ′′(x) > 0 and so f(x) is concave up, and when x < 2,
x− 2 < 0, and hence f ′(x) < 0 and so f(x) is concave down. It follows that the point
at x = 2 is a an inflection point of f(x).
The usual table summarizing all this:

x (−∞, 12) 2 (2,∞)
f ′′(x) − 0 +
f(x) _ max ^
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vi. The graph. I cheated and asked a Maple to do the job for me:
> plot(x*exp(-x),x=-2..5)

�

Quiz #8. Friday, 23 November, 2012. [10 minutes]

1. Find the maximum and minimum values of f(x) = x3−2x2 +x on the interval [−1, 1].
[5]

Solution. Note that f(x) is a polynomial, hence defined (and continuous and differen-
tiable) everywhere. It follows that we need not worry about vertical asymptotes or other
discontinuities, or points where the derivative is not defined, when solving the problem.

To find the critical points of f(x), we need the derivative:

f ′(x) =
d

dx

(
x3 − 2x2 + x

)
= 3x2 − 4x+ 1

Using the quadratic formula, f ′(x) = 3x2 − 4x+ 1 = 0 when

x =
−(−4)±

√
(−4)2 − 4 · 3 · 1
2 · 3

=
4±
√

4
6

=
4± 2

6
=

2± 1
3

=
1
3

or 1 .

Both of the critical points are in the given interval (though one is also an endpoint), so we
compare the values of f(x) at these points and at the endpoints of the interval:

x f(x)
−1 −4
1
3

4
27

1 0

Thus the maximum value of f(x) on [−1, 1] is 4
27 , which is achieved at x = 1

3 , and the
minimum value is −4, which is achieved at x = −1. �

8



Quiz #9. Friday, 30 November, 2012. [10 minutes]

Do one (1) of questions 1 or 2 below.

1. Find the maximum area of a right triangle whose hypotenuse has length
√

8 m. [5]

2. Compute
∫ π/4

0

cos(2x) dx. [5]

Solution to 1. Suppose the base of the right triangle has length x and the height has
length y. Then x2 + y2 =

(√
8
)2

= 8, so y =
√

8− x2, and the area of the triangle is
A = 1

2xy = 1
2x
√

8− x2. It should be pretty obvious that the least x can be is 0, and that
the most it can be (when y = 0) is

√
8. We therefore need to maximize A = 1

2x
√

8− x2

on the interval
[
0,
√

8
]
. Any critical points in the interval?

dA

dx
=

d

dx

[
1
2
x
√

8− x2

]
=

1
2
·
[
d

dx
x

]
·
√

8− x2 +
1
2
· x ·

[
d

dx

√
8− x2

]
=

1
2
· 1 ·

√
8− x2 +

1
2
· x · 1

2
√

8− x2
· d
dx

(
8− x2

)
=

1
2

√
8− x2 +

1
2
x · 1

2
√

8− x2
· (−2x) =

√
8− x2

2
− x2

2
√

8− x2

=
√

8− x2 ·
√

8− x2

2
√

8− x2
− x2

2
√

8− x2
=

8− x2

2
√

8− x2
− x2

2
√

8− x2
=

8− 2x2

2
√

8− x2

which = 0 exactly when 8 − 2x2 = 0, i.e. when x2 = 4 or x = ±2. Note that only x = 2
is in the given interval. We compare the values of A at the endpoints of the interval to its
value at the critical point x = 2:

x A
0 0
2 2√
8 0

It follows that the maximum area of a right triangle whose hypotenuse has length√
8 m is 2 m2. �

Solution to 2. We will use the substitution u = 2x, so du = 2dx and hence dx = 1
2du,

and change the limits of integration as we go along: x 0 π/4
u 0 π/2 Here goes:

∫ π/4

0

cos(2x) dx =
∫ π/2

0

cos(u)
1
2
du =

1
2

∫ π/2

0

cos(u) du =
1
2

sin(u)
∣∣∣∣π/2
0

=
1
2

sin(π/2)− 1
2

sin(0) =
1
2
· 1− 1

2
· 0 =

1
2

�
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Quiz #10. Wednesday, 5 December, 2012. [10 minutes]

1. Compute
∫

26x12ln(x) dx. [5]

Solution. We will use integration by parts with u = ln(x) and v′ = 26x12 = 2 · 13x12, so

u′ =
1
x

and v = 2x13.

∫
x12ln(x) dx =

∫
uv′ dx = uv −

∫
u′v dx = ln(x) · 2x13 −

∫
1
x
· 2x13 dx

= 2x13ln(x)−
∫

2x12 dx = 2x13ln(x)− 2
x13

13
+ C

= 2x13ln(x)− 2
13
x13 + C �

Quiz #11. Friday, 11 January, 2013. [10 minutes]

1. Find the area between the curves y = xln(x) and y = x for 1 ≤ x ≤ e. [5]

Solution. Since ab = a either when a = 0 or when b = 1, xln(x) = x should happen
when either x = 0 or when ln(x) = 1. x = 0 is not in the interval under consideration
(nor in the domain of ln(x) . . . ), but ln(x) = 1 exactly when x = e. Since at x = 1,
x = 1 > 0 = 1 · 0 = xln(x), it follows that for all x with 1 ≤ x ≤ e, we have x ≥ xln(x).
Thus the area between the two curves is :

Area =
∫ e

1

[x− xln(x)] dx =
∫ e

1

x dx−
∫ e

1

xln(x) dx

We’ll use integration by parts on the second one, with

u = ln(x) and v′ = x, so u′ =
1
x

and v =
x2

2
.

=
x2

2

∣∣∣∣e
1

−
∫ e

1

uv′ dx =
e2

2
− 12

2
−
[
uv|e1 −

∫ e

1

u′v dx

]
=

1
2
(
e2 − 1

)
−
[
x2

2
ln(x)

∣∣∣∣e
1

−
∫ e

1

1
x
· x

2

2
dx

]
=

1
2
(
e2 − 1

)
−
[
e2

2
− 12

2
− 1

2

∫ e

1

x dx

]
=

1
2
(
e2 − 1

)
−
[

1
2
(
e2 − 1

)
− 1

2
· x

2

2

∣∣∣∣e
1

]
=

1
2
(
e2 − 1

)
−
[

1
2
(
e2 − 1

)
− e2

4
− 12

4

]
=

1
2
(
e2 − 1

)
−
[

1
2
(
e2 − 1

)
− 1

4
(
e2 − 1

)]
=

1
2
(
e2 − 1

)
− 1

2
(
e2 − 1

)
+

1
4
(
e2 − 1

)
=

1
4
(
e2 − 1

)
�
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Quiz #12. Friday, 18 January, 2013. [12 minutes]

Consider the solid obtained by revolving the region between y =
√
x and y = x2, for

0 ≤ x ≤ 1, about the x-axis.
1. Sketch this solid and find its volume. [5]

Solution. Note first that for 0 ≤ x ≤ 1, we have x2 ≤
√
x. Here’s a sketch of the solid:

Since we revolved the region about the x-axis, the disk/washer method requires that
we use x as the basic variable. The (vertical) cross-section of this solid at x is a washer
with outer radius R =

√
x and inner radius (i.e. the radius of the whole) r = x2. It follows

that the area of the cross-section at x is

A(x) = πR2 − πr2 = π
(√
x
)2 − π (x2

)2
= πx− πx4 = π

(
x− x4

)
,

and so the volume of the solid is

V =
∫ 1

0

A(x) dx =
∫ 1

0

π
(
x− x4

)
dx = π

∫ 1

0

(
x− x4

)
dx

= π

(
x2

2
− x5

5

)∣∣∣∣1
0

= π

(
12

2
− 15

5

)
− π

(
02

2
− 05

5

)
= π

(
1
2
− 1

5

)
− π · 0 = π

(
5
10
− 2

10

)
=

3
10
π .

Note that the limits of the integral come from the range of x’s in the original region. �
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Quiz #13. Friday, 25 January, 2013. [12 minutes]

Consider the solid obtained by revolving the region between y = ex and y = e, for
0 ≤ x ≤ 1, about the y-axis.

1. Sketch this solid and find its volume. [5]

Solution. This time we will use the method of cylindrical shells to compute the volume.
Note first that for 0 ≤ x ≤ 1, we have ex ≤ e1 = e. Here’s a sketch of the solid, with

a cylindrical shell drawn in for good measure:

Since we revolved the given region around a vertical line and are using the shell
method, we need to use x as the basic variable. The cylindrical shell at x has radius
r = x − 0 = x and height h = e − ex. Plugging these into the volume formula for a solid
of revolution using shells and integrating away gives us:

V =
∫ 1

0

2πrh dx = 2π
∫ 1

0

x (e− ex) dx = 2π
∫ 1

0

ex dx− 2π
∫ 1

0

xex dx

We will use integration by parts on the second integral,
with u = x and v′ = ex, so u′ = 1 and v = ex.

= 2πe
x2

2

∣∣∣∣1
0

− 2π
[
xex|10 −

∫ 1

0

1ex dx
]

=
(

2πe
12

2
− 2πe

02

2

)
− 2π

[(
1e1 − 0e0

)
− ex|10

]
= 2πe− 2π

[
e−

(
e1 − e0

)]
= 2πe− 2π[e− e+ 1] = 2π(e− 1) �
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Quiz #14. Friday, 8 February, 2013. [12 minutes]

1. Compute
∫

2
x3 − x

dx. [5]

Solution. First, we factor the denominator. x is obviously a factor and pulling it out
leaves x2 − 1. Since 12 = 1, this is a difference of squares and so

x3 − x = x
(
x2 − 1

)
= x(x− 1)(x+ 1) .

It follows that
2

x3 − x
=
A

x
+

B

x− 1
+

C

x+ 1

for some constants A, B, and C. Putting the partial fractions over a common denominator
tells us that

2
x3 − x

=
2

x(x− 1)(x+ 1)
=
A

x
+

B

x− 1
+

C

x+ 1

=
A(x− 1)(x+ 1) +Bx(x+ 1) + Cx(x− 1)

x(x− 1)(x+ 1)

=
Ax2 −A+Bx2 +Bx+ Cx2 − Cx

x(x− 1)(x+ 1

=
(A+B + C)x2 + (B − C)x−A

x(x− 1)(x+ 1
,

so A+B +C = 0, B−C = 0, and −A = 2. Hence A = −2, so B +C = −A = −(−2) = 2
and B = C, so B = C = 1. Thus∫

2
x3 − x

dx =
∫ (

A

x
+

B

x− 1
+

C

x+ 1

)
dx

=
∫ (

−2
x

+
1

x− 1
+

1
x+ 1

)
dx

= −2
∫

1
x
dx+

∫
1

x− 2
dx+

∫
1

x+ 1
dx

= −2ln(x) + ln(x− 1) + ln(x+ 1) +K �
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Quiz #15. Friday, 15 February, 2013. [25 minutes]

1. Compute
∫ ∞

0

x2 + 3x+ 3
(x+ 1) (x2 + 2x+ 2)

dx. [5]

Solution. First, we work out the antiderivative:
Since x2 + 2x+ 2 = (x+ 1)2 + 1 ≥ 1 for all x, it is irreducible, so the denominator is

given to us fully factored. It follows that

x2 + 3x+ 3
(x+ 1) (x2 + 2x+ 2)

=
A

x+ 1
+

Bx+ C

x2 + 2x+ 2
=
A
(
x2 + 2x+ 2

)
+ (Bx+ C)(x+ 1)

(x+ 1) (x2 + 2x+ 2)

=
(A+B)x2 + (2A+B + C)x+ (2A+ C)

(x+ 1) (x2 + 2x+ 2)
,

so A+B = 1, 2A+B+C = 3, and 2A+C = 3. It follows from the last two equations that
B = 3− (2A+B) = 3− 3 = 0, from the first it then follows that A = 1−B = 1− 0 = 1,
and then from the last that C = 3− 2A = 3− 2 · 1 = 1. Thus∫

x2 + 3x+ 3
(x+ 1) (x2 + 2x+ 2)

dx =
∫ [

A

x+ 1
+

Bx+ C

x2 + 2x+ 2

]
dx

=
∫ [

1
x+ 1

+
1

x2 + 2x+ 2

]
dx

=
∫

1
x+ 1

dx+
∫

1
x2 + 2x+ 2

dx

=
∫

1
x+ 1

dx+
∫

1
(x+ 1)2 + 1

dx

We’ll use the substitution u = x+ 1, so du = dx, in both integrals.

=
∫

1
u
du+

∫
1

u2 + 1
du

= ln(u) + arctan(u) +K

= ln(x+ 1) + arctan(x+ 1) +K .

Second, we use this antiderivative to compute the given improper integral:∫ ∞
0

x2 + 3x+ 3
(x+ 1) (x2 + 2x+ 2)

dx = lim
t→∞

∫ t

0

x2 + 3x+ 3
(x+ 1) (x2 + 2x+ 2)

dx

= lim
t→∞

[ln(x+ 1) + arctan(x+ 1)]|t0
= lim
t→∞

([ln(t+ 1) + arctan(t+ 1)]

− [ln(0 + 1) + arctan(0 + 1)])

= lim
t→∞

(
ln(t+ 1) + arctan(t+ 1)− 0− π

4

)
=∞ ,

since ln(t+ 1)→∞ and arctan(t+ 1)→ π

2
as t→∞. �
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Quiz #16. Friday, 1 March, 2013. [15 minutes]

Do one (1) of questions 1 or 2 below.

1. Find the arc-length of the curve y =
x2

2
for 0 ≤ x ≤ 1. [5]

2. Find the area of the surface obtained by revolving the curve y =
x2

2
for 0 ≤ x ≤ 1

about the y-axis. [5]

Solution to 1.
dy

dx
=

d

dx

(
x2

2

)
=

1
2
· 2x = x, so the arc-length is given by:

∫ 1

0

ds =
∫ 1

0

√
1 +

(
dy

dx

)2

dx =
∫ 1

0

√
1 + x2 dx

We’ll substitute x = tan(θ), so dx = sec2(θ) dθ and x 0 1

θ 0 π/4 .

=
∫ π/4

0

√
1 + tan2(θ) sec2(θ) dθ =

∫ π/4

0

√
sec2(θ) sec2(θ) dθ

=
∫ π/4

0

sec3(θ) dθ =
1
2

sec(θ) tan(θ)
∣∣∣∣π/4
0

+
1
2

ln (sec(θ) + tan(θ))
∣∣∣∣π/4
0

=
1
2
·
√

2 · 1− 1
2
· 1 · 0 +

1
2

ln
(√

2 + 1
)
− 1

2
ln (1 + 0)

=
1√
2

+ ln
(√

2 + 1
)

�

Solution to 2.
dy

dx
=

d

dx

(
x2

2

)
=

1
2
· 2x = x, and r = x− 0 = x since we are revolving

about the y-axis, so the surface area is given by:

∫ 1

0

2πr ds =
∫ 1

0

2πx

√
1 +

(
dy

dx

)2

dx =
∫ 1

0

2πx
√

1 + x2 dx

We’ll substitute u = 1 + x2, so du = 2x dx and x 0 1

u 1 2
.

= π

∫ 2

1

√
u du = π

∫ 2

1

u1/2 du = π · 2
3
u3/2

∣∣∣∣2
1

=
2
3
π23/2 − 2

3
π13/2 =

2
3
π
(

2
√

2− 1
)

�
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Quiz #17. Friday, 8 March, 2013. [15 minutes]

Do one (1) of questions 1 or 2 below.

1. Find the arc-length of the polar curve r = eθ for 0 ≤ θ ≤ ln(2). [5]

2. Find the area of the region between the origin and the polar curve r = eθ for 0 ≤ θ ≤
ln(2). [5]

Solution to 1.
dr

dθ
=

d

dθ
eθ = eθ. Plugging this into the arc-length formula for polar

curves gives:

∫ ln(2)

0

ds =
∫ ln(2)

0

√
r2 +

(
dr

dθ

)2

dθ =
∫ ln(2)

0

√
(eθ)2 + (eθ)2 dθ

=
∫ ln(2)

0

√
2 (eθ)2 dθ =

√
2
∫ ln(2)

0

√
(eθ)2 dθ =

√
2
∫ ln(2)

0

eθ dθ

=
√

2 · eθ
∣∣∣ln(2)

0
=
√

2
(
eln(2) − eθ

)
=
√

2 (2− 1) =
√

2 �

Solution to 2.
dr

dθ
=

d

dθ
eθ = eθ. Plugging this into the area formula for polar regions

gives: ∫ ln(2)

0

r2

2
dθ =

∫ ln(2)

0

(
eθ
)2

2
dθ =

1
2

∫ ln(2)

0

eθeθ dθ

We’ll substitute w = eθ, so dw = eθ dθ and θ 0 ln(2)
w 1 2 .

=
1
2

∫ 2

1

w dw =
1
2
· w

2

2

∣∣∣∣2
1

=
1
4

(4− 1) =
3
4

�

Quiz #18. Friday, 15 March, 2013. [10 minutes]

1. Determine whether the series
∞∑
n=0

1
2n + n

converges or diverges. [5]

Solution. Since 2n + n ≥ 2n for all n ≥ 0, we have

0 ≤ 1
2n + n

≤ 1
2n

for all n ≥ 0. Since
∞∑
n=0

1
2n

is a geometric series with common ratio r = 1
2 and |r| = 1

2 < 1,

it converges. It follows by the (Basic) Comparison Test that
∞∑
n=0

1
2n + n

converges too. �
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Quiz #19. Friday, 22 March, 2013. [10 minutes]

1. Determine whether the series
∞∑
n=0

2nen

n!3n
converges or diverges. [5]

Solution. We will use the Ratio Test. Since

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣
2n+1en+1

(n+1)!3n+1

2nen

n!3n

∣∣∣∣∣∣ = lim
n→∞

2n+1en+1

(n+ 1)!3n+1
· n!3n

2nen

= lim
n→∞

2e
(n+ 1)3

=
2e
3

lim
n→∞

1
n+ 1

=
2e
3
· 0 = 0 < 1 ,

the Ratio Test tells us that the given series converges. (Absolutely, in fact.) �

Quiz #20. Thursday, 28 March, 2013. [10 minutes]

1. Determine for which values of x the power series
∞∑
n=0

nxn

5n
converges and for which it

diverges. [5]

Solution. We will apply the Ratio Test first. Since

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣
(n+1)xn+1

5n+1

nxn

5n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣ (n+ 1)xn+1

5n+1
· 5n

nxn

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n+ 1)x
5n

∣∣∣∣
=
|x|
5

lim
n→∞

n+ 1
n

=
|x|
5

lim
n→∞

(
n

n
+

1
n

)
=
|x|
5

lim
n→∞

(
1 +

1
n

)
=
|x|
5

(1 + 0) =
|x|
5
,

the series will converge (absolutely) when |x|5 < 1, i.e. when |x| < 5 (that is, −5 < x < 5),
and diverge when |x|5 > 1, i.e. when |x| > 5 (that is, x < −5 or x > 5). Unfortunately, the
Ratio Test tells us nothing when |x|5 = 1, i.e. when x = ±5.

When x = 5, the series is
∞∑
n=0

n5n

5n
=
∞∑
n=0

n. This diverges by the Divergence Test,

since lim
n→∞

n =∞ 6= 0.

On the other hand, when x = −5, the series is
∞∑
n=0

n(−5)n

5n
=

∞∑
n=0

n(−1)n5n

5n
=

∞∑
n=0

(−1)nn. This also diverges by the Divergence Test, since lim
n→∞

(−1)nn does not exist,

and hence 6= 0.
It follows that the given series converges exactly when |x| < 5, i.e. when −5 < x < 5,

and diverges otherwise. �
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Quiz #21. Friday, 5 April, 2013. [15 minutes]

1. Find the Taylor series at 0 of f(x) =
x

1 + x
− 1 and find its radius of convergence. [5]

Solution 1. (Using Taylor’s formula.) We build the usual list of derivatives and values,
looking for patterns:

n f (n)(x) f (n)(0)
0 x

1+x − 1 −1

1 1(1+x)−x(1)
(1+x)2 − 0 = 1

(1+x)2 1
2 −2

(1+x)3 −2
3 6

(1+x)4 6
4 −24

(1+x)5 −24
...

...
...

Looking at the last column, it’s not too hard to see that f (n)(0) = (−1)n+1n!. Plugging
this into Taylor’s formula gives the series:

∞∑
n=0

f (n)(0)
n!

xn =
∞∑
n=0

(−1)n+1n!
n!

xn =
∞∑
n=0

(−1)n+1xn = −1 + x− x2 + x3 − · · ·

To find the radius of convergence of this Taylor series, we use the Ratio Test:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−1)n+2xn+1

(−1)n+1xn

∣∣∣∣ = lim
n→∞

| − x| = |x|

It follows that the series converges (absolutely) for |x| < 1 and diverges for |x| > 1, so its
radius of convergence is R = 1. �

Solution 2. (Using algebra and cunning . . . ) Note that

f(x) =
x

1 + x
− 1 = −1 +

x

1 + x
= −1 +

x

1− (−x)
,

and the latter part of the last expression is the sum of a geometric series with first term
a = x and common ratio r = −x. Thus

f(x) = −1 +
x

1− (−x)
= −1 + x− x2 + x3 − x4 + · · · =

∞∑
n=0

(−1)n+1xn,

and since the function is equal to the series (when it converges), this series is the Taylor
series of the function at 0.

Since it is a geometric series, it converges exactly when |r| = | − x| = |x| < 1, so its
radius of convergence is R = 1. �
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