Mathematics 1101Y – Calculus I: functions and calculus of one variable TRENT UNIVERSITY, 2012–2013 Final Examination

Time: 09:00–12:00, on Thursday, 11 April, 2013. Brought to you by Стефан Біланюк. **Instructions:** Do parts I, J, and K, and, if you wish, part Z. Show all your work and justify all your answers. If in doubt about something, ask!

Aids: Any calculator; (all sides of) one aid sheet; one (1) brain $(10^{10^{10}} \text{ neuron limit})$.

Part I. Do all four (4) of 1-4.

1. Compute
$$\frac{dy}{dx}$$
 as best you can in any three (3) of **a**-**f**. $[15 = 3 \times 5 \text{ each}]$
a. $y = \frac{e^{2x} - 1}{e^{2x} + 1}$ **b**. $\begin{array}{l} y = \arctan(t) \\ x = \frac{1}{3}t^3 + t \end{array}$ **c**. $y = (1 + \sin(x))^2$
d. $\tan(y) = x$ **e**. $y = xe^{-x}$ **f**. $y = \int_1^x \frac{\ln(t)}{t} dt$

2. Evaluate any three (3) of the integrals **a**-**f**. $[15 = 3 \times 5 \text{ each}]$

a.
$$\int \sec^{17}(x) \tan(x) dx$$
 b. $\int_{0}^{\sqrt{\pi}} z \cos(z^2) dz$ **c.** $\int \frac{1}{\sqrt{4+x^2}} dx$
d. $\int_{0}^{1} \arctan(y) dy$ **e.** $\int \frac{1}{x^3+x} dx$ **f.** $\int_{1}^{\infty} \frac{1}{t^2} dt$

3. Do any three (3) of **a**–**f**. $[15 = 3 \times 5 \text{ each}]$

a. Find the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{2^n}{n^2} x^n$.

- **b.** Sketch the polar curve $r = \theta$, $0 \le \theta \le \pi$, and find the area of the region between this curve and the origin.
- c. Determine whether the series $\sum_{n=0}^{\infty} \frac{\sqrt{n}}{(n+1)^2}$ converges or diverges.
- **d.** Sketch the region between $y = x^2$ and $y = \sqrt{x}$, $0 \le x \le 1$, and find its area.
- **e.** Sketch the parametric curve $x = \cos(t)$, $y = \sin(t)$, $0 \le x \le \pi$, and find its arc-length.
- **f.** Compute f'(0) using the limit definition of the derivative if $f(x) = x^2 + x + 1$.
- **g.** Sketch the solid obtained by revolving the region between y = 1 and $y = \sqrt{x}$, $0 \le x \le 1$, about the *y*-axis, and find its volume.

4. Consider the curve
$$y = \frac{x^2}{2}$$
, for $0 \le x \le 2$.

- **a.** Sketch the curve. [1]
- **b.** Sketch the surface obtained by revolving the curve about the x-axis. [1]
- **c.** Compute either i. the length of the curve or *ii*. the area of the surface. [Just one, please!] [8]

Part J. Do any *two* (2) of **5–7**. $/30 = 2 \times 15 \text{ each}/$

- 5. Gravel is dumped from a conveyor belt at a rate of $3 m^3/min$. At any given instant the gravel forms a conical pile whose height is twice the radius of the base. How fast is the height of the pile increasing at the instant that the pile is 1 m high? [The volume of a cone with height h and base radius r is $\frac{1}{3}\pi r^2 h$.]
- 6. Find any and all intercepts, maximum, minimum, and inflection points, and vertical and horizontal asymptotes of $f(x) = e^{1/x}$, and sketch its graph.
- 7. Sketch the solid obtained by revolving the region between y = x and $y = x^2$, for $0 \le x \le 1$, about the line x = -2 and find its volume.

Part K. Do one (1) of 8 or 9. $[15 = 1 \times 15 \text{ each}]$

- 8. Let $f(x) = \frac{1}{(2+x)^2}$.
 - **a.** Use Taylor's formula to find the Taylor series at 0 of f(x). [10]
 - **b.** Find the radius and interval of convergence of this Taylor series. [5]
 - c. [Bonus!] Find the Taylor series at 0 of f(x) without using Taylor's formula. [1]

9. Consider the series
$$\sum_{n=1}^{\infty} \frac{(-1)^n (z-2)^n}{2^n}$$
, where z is an unknown.

- **a.** Determine for which values of z the series converges. [10]
- **b.** Find a function g(z) equal to this series when it converge. [5]

|Total = 100|

- **Part Z.** Bonus problems! Do them (or not less for me to mark! :-), if you feel like it.
 - **0.** Recall that an integer greater than 1 is a prime number if it has no positive integer factors other than itself and 1. Does the polynomial $p(x) = x^2 + x + 41$ always give you a prime number as its output whenever x is an integer greater than or equal to zero? Explain why or why not. [1]
 - **00.** Write a haiku touching on calculus or mathematics in general. [2]

haiku?

seventeen in three: five and seven and five of syllables in lines

I HOPE YOU HAVE EVEN MORE FUN THIS SUMMER THAN YOU DID IN THIS COURSE!