## Mathematics 1101Y - Calculus I: functions and calculus of one variable Trent University, 2012-2013 <br> Final Examination

Time: 09:00-12:00, on Thursday, 11 April, 2013. Brought to you by Стефан Біланюк. Instructions: Do parts I, J, and K, and, if you wish, part Z. Show all your work and justify all your answers. If in doubt about something, ask!
Aids: Any calculator; (all sides of) one aid sheet; one (1) brain ( $10^{10^{10}}$ neuron limit).
Part I. Do all four (4) of 1-4.

1. Compute $\frac{d y}{d x}$ as best you can in any three (3) of a-f. [15 $=3 \times 5$ each]
a. $y=\frac{e^{2 x}-1}{e^{2 x}+1}$
b. $\begin{aligned} & y=\arctan (t) \\ & x=\frac{1}{3} t^{3}+t\end{aligned}$
c. $y=(1+\sin (x))^{2}$
d. $\tan (y)=x$
e. $y=x e^{-x}$
f. $y=\int_{1}^{x} \frac{\ln (t)}{t} d t$
2. Evaluate any three (3) of the integrals a-f. [15 $=3 \times 5$ each]
a. $\int \sec ^{17}(x) \tan (x) d x$
b. $\int_{0}^{\sqrt{\pi}} z \cos \left(z^{2}\right) d z$
c. $\int \frac{1}{\sqrt{4+x^{2}}} d x$
d. $\int_{0}^{1} \arctan (y) d y$
e. $\int \frac{1}{x^{3}+x} d x$
f. $\int_{1}^{\infty} \frac{1}{t^{2}} d t$
3. Do any three (3) of a-f. [15 $=3 \times 5$ each]
a. Find the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{2^{n}}{n^{2}} x^{n}$.
b. Sketch the polar curve $r=\theta, 0 \leq \theta \leq \pi$, and find the area of the region between this curve and the origin.
c. Determine whether the series $\sum_{n=0}^{\infty} \frac{\sqrt{n}}{(n+1)^{2}}$ converges or diverges.
d. Sketch the region between $y=x^{2}$ and $y=\sqrt{x}, 0 \leq x \leq 1$, and find its area.
e. Sketch the parametric curve $x=\cos (t), y=\sin (t), 0 \leq x \leq \pi$, and find its arc-length.
f. Compute $f^{\prime}(0)$ using the limit definition of the derivative if $f(x)=x^{2}+x+1$.
g. Sketch the solid obtained by revolving the region between $y=1$ and $y=\sqrt{x}$, $0 \leq x \leq 1$, about the $y$-axis, and find its volume.
4. Consider the curve $y=\frac{x^{2}}{2}$, for $0 \leq x \leq 2$.
a. Sketch the curve. [1]
b. Sketch the surface obtained by revolving the curve about the $x$-axis. [1]
c. Compute either $\begin{array}{r}i . \\ \text { or } i i .\end{array}$ the length of the curve
[Just one, please!] [8]

Part J. Do any two (2) of 5-7. [30 $=2 \times 15$ each]
5. Gravel is dumped from a conveyor belt at a rate of $3 \mathrm{~m}^{3} / \mathrm{min}$. At any given instant the gravel forms a conical pile whose height is twice the radius of the base. How fast is the height of the pile increasing at the instant that the pile is 1 m high? [The volume of a cone with height $h$ and base radius $r$ is $\frac{1}{3} \pi r^{2} h$.]
6. Find any and all intercepts, maximum, minimum, and inflection points, and vertical and horizontal asymptotes of $f(x)=e^{1 / x}$, and sketch its graph.
7. Sketch the solid obtained by revolving the region between $y=x$ and $y=x^{2}$, for $0 \leq x \leq 1$, about the line $x=-2$ and find its volume.

Part K. Do one (1) of $\mathbf{8}$ or $\mathbf{9}$. [15 $=1 \times 15$ each]
8. Let $f(x)=\frac{1}{(2+x)^{2}}$.
a. Use Taylor's formula to find the Taylor series at 0 of $f(x)$. [10]
b. Find the radius and interval of convergence of this Taylor series. [5]
c. [Bonus!] Find the Taylor series at 0 of $f(x)$ without using Taylor's formula. [1]
9. Consider the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}(z-2)^{n}}{2^{n}}$, where $z$ is an unknown.
a. Determine for which values of $z$ the series converges. [10]
b. Find a function $g(z)$ equal to this series when it converge. [5]

$$
[\text { Total }=100]
$$

Part Z. Bonus problems! Do them (or not - less for me to mark! :-), if you feel like it.
0. Recall that an integer greater than 1 is a prime number if it has no positive integer factors other than itself and 1 . Does the polynomial $p(x)=x^{2}+x+41$ always give you a prime number as its output whenever $x$ is an integer greater than or equal to zero? Explain why or why not. [1]
00. Write a haiku touching on calculus or mathematics in general. [2]

## haiku?

seventeen in three: five and seven and five of syllables in lines

## I hope you have even more fun this summer THAN YOU DID IN THIS COURSE!

