Trent University

 MATH 1101Y Test 2

 MATH 1101Y Test 2
 30 January, 2012

Time: 50 minutes

Question Mark

Total _ $/ 40$

Instructions

- Show all your work. Legibly, please!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator and an aid sheet.

1. Compute any three (3) of the integrals a-f. [12 $=3 \times 4$ each]
a. $\int_{0}^{1}\left(1-z^{16}\right) d z$
b. $\int \frac{e^{w}+e^{-w}}{2} d w$
c. $\int_{1}^{e} 4 x \ln (x) d x$
d. $\int \frac{\sec ^{2}(\sqrt{x})}{2 \sqrt{x}} d x$
e. $\int_{0}^{\pi / 4} \cos ^{2}(t) d t$
f. $\int \frac{1}{\sqrt{9-x^{2}}} d x$

Solution to a.

$$
\begin{aligned}
\int_{0}^{1}\left(1-z^{16}\right) d z & =\int_{0}^{1} 1 d z-\int_{0}^{1} z^{16} d z=\left.z\right|_{0} ^{1}-\left.\frac{z^{17}}{17}\right|_{0} ^{1} \\
& =(1-0)-\left(\frac{1^{17}}{17}-\frac{0^{17}}{17}\right)=1-\frac{1}{17}=\frac{16}{17}
\end{aligned}
$$

Solution to b.

$$
\begin{aligned}
\int \frac{e^{w}+e^{-w}}{2} d w= & \frac{1}{2} \int e^{w} d w+\frac{1}{2} \int e^{-w} d w \\
& \text { Substitute } u=-w, \text { so } d u=(-1) d w \text { and } \\
& d w=(-1) d u, \text { in the second integral. } \\
= & \frac{1}{2} e^{w}+\frac{1}{2} \int e^{u}(-1) d u=\frac{1}{2} e^{w}-\frac{1}{2} e^{u}+C \\
= & \frac{1}{2} e^{w}-\frac{1}{2} e^{-w}+C=\frac{e^{w}-e^{-w}}{2}+C
\end{aligned}
$$

Solution to c. Use integration by parts, with $u=\ln (x)$ and $v^{\prime}=4 x$, so $u^{\prime}=\frac{1}{x}$ and $v=4 \frac{x^{2}}{2}=2 x^{2}$.

$$
\begin{aligned}
\int_{1}^{e} 4 x \ln (x) d x & =\left.2 x^{2} \ln (x)\right|_{1} ^{e}-\int_{1}^{e} 2 x^{2} \frac{1}{x} d x \\
& =\left(2 e^{2} \ln (e)\right)-\left(2 \cdot 1^{2} \ln (1)\right)-\int_{1}^{e} 2 x d x \\
& =2 e^{2}-0-\left.2 \frac{x^{2}}{2}\right|_{1} ^{e}=2 e^{2}-\left[e^{2}-1^{2}\right]=e^{2}+1
\end{aligned}
$$

Solution to d. Substitute $u=\sqrt{x}=x^{1 / 2}$, so $d u=\frac{1}{2} x^{-1 / 2} d x=\frac{1}{2 \sqrt{x}} d x$.

$$
\int \frac{\sec ^{2}(\sqrt{x})}{2 \sqrt{x}} d x=\int \sec ^{2} u d u=\tan (u)+C=\tan (\sqrt{x})+C
$$

Solution to e. We will use the "half-angle" formula $\cos ^{2}(t)=\frac{1}{2}+\frac{1}{2} \cos (2 t)$, followed by the substitution $s=2 t$, so $d s=2 d t$ and $d t=\frac{1}{2} d s$. We will also change the limits when we do the substitution, $\begin{array}{ccc}t & 0 & \pi / 4 \\ s & 0 & \pi / 2\end{array}$.

$$
\begin{aligned}
\int_{0}^{\pi / 4} \cos ^{2}(t) d t & =\int_{0}^{\pi / 4}\left(\frac{1}{2}+\frac{1}{2} \cos (2 t)\right) d t=\int_{0}^{\pi / 2}\left(\frac{1}{2}+\frac{1}{2} \cos (s)\right) \cdot \frac{1}{2} d s \\
& =\frac{1}{4} \int_{0}^{\pi / 2}(1+\cos (s)) d s=\left.\frac{1}{4}(s+\sin (s))\right|_{0} ^{\pi / 2} \\
& =\frac{1}{4}\left(\frac{\pi}{2}+\sin \left(\frac{\pi}{2}\right)\right)-\frac{1}{4}(0+\sin (0))=\frac{1}{4}\left(\frac{\pi}{2}+1\right)-\frac{1}{4}(0+0) \\
& =\frac{\pi}{8}+\frac{1}{4}
\end{aligned}
$$

Solution to f. We will use the trigonometric substitution $x=3 \sin (\theta)$, so $d x=3 \cos (\theta) d \theta$ and $\theta=\arcsin \left(\frac{x}{3}\right)$.

$$
\begin{aligned}
\int \frac{1}{\sqrt{9-x^{2}}} d x & =\int \frac{1}{\sqrt{9-3^{2} \sin ^{2}(\theta)}} \cdot 3 \cos (\theta) d \theta=\int \frac{3 \cos (\theta)}{\sqrt{9\left(1-\sin ^{2}(\theta)\right)}} d \theta \\
& =\int \frac{3 \cos (\theta)}{\sqrt{9 \cos ^{2}(\theta)}} d \theta=\int \frac{3 \cos (\theta)}{3 \cos (\theta)} d \theta=\int 1 d \theta \\
& =\theta+C=\arcsin \left(\frac{x}{3}\right)+C
\end{aligned}
$$

2. Do any two (2) of a-c. [10 $=2 \times 5$ each]
a. Sketch the region between $y=\sin (\pi x)$ and $y=-1$, for $0 \leq x \leq 1$, and find its area.
b. Find the maximum area of a rectangle whose border has total length 36 .
c. Use the Right-Hand Rule to compute $\int_{0}^{1}(2 x+1) d x$.

Solution to a. Here's a very crude sketch of the region:

Note that the graph of $y=\sin (\pi x)$ for $0 \leq x \leq 1$ is just the graph of $\sin (x)$ for $0 \leq x \leq \pi$ compressed horizontally.

The area of this region is then

$$
\left.\begin{array}{rl}
\int_{0}^{1}(\sin (\pi x)-(-1)) d x & =\int_{0}^{1}(\sin (\pi x)+1) d x \quad \begin{array}{l}
\text { Substitute } u=\pi x, \text { so } \\
d u=\pi d x \text { and } d x=\frac{1}{\pi} d u \\
\text { with new limits } \begin{array}{l}
x 01 \\
u 0
\end{array} \\
\\
\end{array} \int_{0}^{\pi}(\sin (u)+1) \frac{1}{\pi} d u=\left(\left.\frac{1}{\pi}(-\cos (u)+u)\right|_{0} ^{\pi}\right.
\end{array}\right\}
$$

Solution to b. Suppose our rectangle has sides of lengths x and y, respectively.

Then its border has total length $2 x+2 y=36$ and its area is $A=x y$. It follows from the former equation that $y=\frac{36-2 x}{2}=18-x$, so $A=x y=x(18-x)=18 x-x^{2}$ in terms of x. Note that since any rectangle must have sides of non-negative but finite length, $0 \leq x<\infty$. We throw all this information into the procedure for finding maxima and minima:

First, note that $\frac{d A}{d x}=\frac{d}{d x}\left(18 x-x^{2}\right)=18-2 x$. This equals 0 when $x=\frac{1}{2} \cdot 18=9$, for which value of x we have $A=18 \cdot 9-9^{2}=162-81=81$.

Second, note that when $x=0, A=18 \cdot 0-0^{2}=0$.
Third, as $n \rightarrow \infty, A=\left(18 x-x^{2}\right) \rightarrow-\infty$ because x^{2} grows much faster than x as x increases. (We have to take a limit because ∞, our right "endpoint", isn't a real number.)

Comparing the three values 0,81 , and $-\infty$, the largest, namely 81 , gives the maximum area of a rectangle whose total border has length 36 . Note that this maximum occurs when $x=y=9$, i.e. when the rectangle is a square with sides of length 9 .

Solution to c. We plug the given information into the Right-Hand Rule formula,

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{b-a}{n} f\left(a+i \frac{b-a}{n}\right)
$$

and compute away:

$$
\begin{aligned}
\int_{0}^{1}(2 x+1) d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1-0}{n}\left[2\left(0+i \frac{1-0}{n}\right)+1\right]=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{n}\left[\frac{2}{n} i+1\right] \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left[\frac{2}{n} i+1\right]=\lim _{n \rightarrow \infty} \frac{1}{n}\left[\left(\sum_{i=1}^{n} \frac{2}{n} i\right)+\left(\sum_{i=1}^{n} 1\right)\right] \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}\left[\frac{2}{n}\left(\sum_{i=1}^{n} i\right)+n\right]=\lim _{n \rightarrow \infty} \frac{1}{n}\left[\frac{2}{n} \cdot \frac{n(n+1)}{2}+n\right] \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}[(n+1)+n]=\lim _{n \rightarrow \infty} \frac{1}{n}[2 n+1]=\lim _{n \rightarrow \infty}\left[2 n \frac{1}{n}+1 \frac{1}{n}\right] \\
& =\lim _{n \rightarrow \infty}\left[2+\frac{1}{n}\right]=2, \quad \text { since } \frac{1}{n} \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

3. Do one (1) of \mathbf{a} or \mathbf{b}. [8]
a. A smooth horizontal floor meets a smooth vertical floor at a right angle, and a ladder 5 m long is set with its base on the floor and its top against the wall and begins to slide down. At the instant that the top of the ladder is 3 m above the floor, the top is moving down at $2 \mathrm{~m} / \mathrm{s}$. How is the distance between the base of the ladder and the wall changing at this instant?
b. Sketch the solid obtained by revolving the region below $x+y=1$ and above $y=0$ for $0 \leq x \leq 1$ about the y-axis, and find its volume.

Solution to a. We introduce coordinates so that the x-axis lies along the floor and the y-axis along the wall, as in the diagram below.

The ladder, which is 5 m long, forms the hypotenuse of a right-angled triangle in which the other two sides are (parts of) the floor and the wall. If the top of the ladder is at y and the bottom of the ladder is at x, then $x^{2}+y^{2}=5^{2}=25$ by the Pythagorean Theorem. Since $y=3$ at the instant in question, $x=\sqrt{25-y^{2}}=\sqrt{25-9}=\sqrt{16}=4$ at this instant. We are given that $\frac{d y}{d t}=-2$ at the same instant.

To obtain $\frac{d x}{d t}$ at the instant in question, we differentiate both sides of $x^{2}+y^{2}=25$,

$$
2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=\frac{d}{d t}\left(x^{2}+y^{2}\right)=\frac{d}{d t} 25=0
$$

plug in what we know of x, y, and $\frac{d y}{d t}$ at the given instant,

$$
8 \frac{d x}{d t}-12=2 \cdot 4 \cdot \frac{d x}{d t}+2 \cdot 3 \cdot(-2)=0
$$

and solve for $\frac{d x}{d t}$:

$$
8 \frac{d x}{d t}-12=0 \quad \Longrightarrow \quad \frac{d x}{d t}=\frac{12}{8}=\frac{3}{2}
$$

Thus the ladder is moving away from the wall (as $\frac{d x}{d t}>0$) at a rate of $\frac{3}{2} \mathrm{~m} / \mathrm{s}$ at the instant in question.

Solution to b. Here is a crude sketch of the solid, with the original region shaded in:

It remains to find the volume of the solid, a cone of height 1 with base radius 1.
Disk/washer method: Since the axis of revolution was the y-axis, we will have to integrate with respect to y; note that the given region includes y values between 0 and 1 . The outer radius of the washer at y is $R=x-0=x=1-y$ (recall that the right border of the region is the line $x+y=1$). Since the region's left border is the y-axis itself, the inner radius of each washer is $r=0-0=0$. We plug all this into the volume formula for the washer method:

$$
\begin{aligned}
V=\int_{0}^{1} \pi\left(R^{2}-r^{2}\right) d y & =\int_{0}^{1} \pi\left((1-y)^{2}-0^{2}\right)^{2} d y=\pi \int_{0}^{1}\left(1-2 y+y^{2}\right) d y \\
& =\left.\pi\left(y-y^{2}+\frac{y^{3}}{3}\right)\right|_{0} ^{1}=\pi\left(1-1^{2}+\frac{1^{3}}{3}\right)-\pi\left(0-0^{2}+\frac{0^{3}}{3}\right) \\
& =\pi\left(1-1+\frac{1}{3}\right)-\pi \cdot 0=\frac{\pi}{3}
\end{aligned}
$$

Cylindrical shell method: Since the axis of revolution was the y-axis, we will have to integrate with respect to x; note that the given region includes x values between 0 and 1 . The radius of the cylindrical shell for x is $r=x-0=x$, and its height is $h=y-0=1-x$ (recall that the right border of the region is the line $x+y=1$). We plug all this into the volume formula for the cylindrical shell method:

$$
\begin{aligned}
V=\int_{0}^{1} 2 \pi r h d x & =\int_{0}^{1} 2 \pi x(1-x) d x=2 \pi \int_{0}^{1}\left(x-x^{2}\right) d x \\
& =\left.2 \pi\left(\frac{x^{2}}{2}-\frac{x^{3}}{3}\right)\right|_{0} ^{1}=2 \pi\left(\frac{1^{2}}{2}-\frac{1^{3}}{3}\right)-2 \pi\left(\frac{0^{2}}{2}-\frac{0^{3}}{3}\right) \\
& =2 \pi\left(\frac{1}{2}-\frac{1}{3}\right)-2 \pi \cdot 0=2 \pi \frac{1}{6}=\frac{\pi}{3}
\end{aligned}
$$

Volume formula: As noted in class and in the textbook, the volume of a cone of height h and base radius r is $V=\frac{1}{3} \pi r^{2} h$. The cone in this problem has $h=1$ and $r=1$, so it has a volume of $V=\frac{1}{3} \pi \cdot 1^{2} \cdot 1=\frac{\pi}{3}$.
4. Find the domain and any (and all!) intercepts, vertical and horizontal asymptotes, local maxima and minima, and points of inflection of $f(x)=x e^{-x}$, and sketch its graph. [10]

Solution. Here goes!

i. Domain: e^{t} is defined and continuous for all real numbers t, so e^{-x} is also defined and continuous for all x. Since x is also defined and continuous everywhere, it follows that $f(x)=x e^{-x}$ is defined and continuous for all x.
ii. Intercepts: $f(0)=0 e^{-0}=0$, so $f(x)$ has y-intercept 0 . Since $e^{t}>0$ for all t, $f(x)=x e^{-x}=0$ can only happen if $x=0$, so the y-intercept is also the only x-intercept. iii. Vertical asymptotes: Since $f(x)=x e^{-x}$ is defined and continuous for all x, it cannot have any vertical asymptotes.
iv. Horizontal asymptotes: We check the limits as $x \rightarrow \pm \infty$. Recall that as $t \rightarrow \infty$, $e^{t} \rightarrow \infty$, and as $t \rightarrow-\infty, e^{t} \rightarrow 0^{+}$.

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} x e^{-x} & =\lim _{x \rightarrow-\infty} \frac{x}{e^{x}} \rightarrow-\infty \\
\lim _{x \rightarrow \infty} x e^{-x} & =\lim _{x \rightarrow \infty} \frac{x}{e^{x}} \rightarrow \infty \quad \text { since as } x \rightarrow-\infty, e^{x} \rightarrow 0^{+} \\
& \left.=\lim _{x \rightarrow \infty} \frac{\frac{d}{d x} x}{\frac{d}{d x} e^{x}} \quad \text { [by l'Hôpital's Rule }\right]=\lim _{x \rightarrow \infty} \frac{1}{e^{x}} \rightarrow 1=\infty
\end{aligned}
$$

It follows that $f(x)$ has a horizontal asymptote of $y=0$ on the right only.
v. Maxima and minima: We first need to compute the derivative.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x} x e^{-x}=\left(\frac{d}{d x} x\right) e^{-x}+x\left(\frac{d}{d x} e^{-x}\right)=1 e^{-x}+x e^{-x} \frac{d}{d x}(-x) \\
& =e^{-x}+x e^{-x}(-1)=(1-x) e^{-x}
\end{aligned}
$$

Since $e^{x}>0$ for all x, it follows that $f^{\prime}(x)=(1-x) e^{-x}=0$ exactly when $1-x=0$, i.e. when $x=1$. Moreover, $f^{\prime}(x)=(1-x) e^{-x}>0$ exactly when $1-x>0$, i.e. when $x>1$. Building the usual table with this information,

x	$(-\infty, 1)$	1	$(1, \infty)$	
$f^{\prime}(x)$	+	0	-	
$f(x)$	\uparrow	\max	\downarrow	

we see that the maximum at $x=1$ is the only extreme point of $f(x)$. Note that $f(1)=$ $1 e^{-1}=e^{-1}=\frac{1}{e}$.
vi. Inflection and curvature: We first need to compute the second derivative.

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{d}{d x} f^{\prime}(x)=\frac{d}{d x}(1-x) e^{-x}=\left(\frac{d}{d x}(1-x)\right) e^{-x}+(1-x)\left(\frac{d}{d x} e^{-x}\right) \\
& =(-1) e^{-x}+(1-x) e^{-x} \frac{d}{d x}(-x)=-e^{-x}+(1-x) e^{-x}(-1) \\
& =-e^{-x}-e^{-x}+x e^{-x}=(x-2) e^{-x}
\end{aligned}
$$

Since $e^{x}>0$ for all x, it follows that $f^{\prime \prime}(x)=(x-2) e^{-x}=0$ exactly when $x-2=0$, i.e. when $x=2$. Moreover, $f^{\prime \prime}(x)=(x-2) e^{-x}>0$ exactly when $x-2<0$, i.e. when $x<2$. Building the usual table with this information,

$$
\begin{array}{cccc}
x & (-\infty, 2) & 2 & (2, \infty) \\
f^{\prime \prime}(x) & - & 0 & + \\
f(x) & \frown & \text { inflection } & \smile
\end{array}
$$

we see that $x=2$ gives the only inflection point of $f(x)$. Note that $f(2)=2 e^{-2}=\frac{2}{e^{2}}$. vii. The graph: Cheating slightly, we plot the graph with Maple:

```
> plot(x*exp(-x),x=-1..6);
```

(11

[^0]
[^0]: That's all! Whew!

