Mathematics 1101Y - Calculus I: Functions and calculus of one variable
 Trent University, 2011-2012

MATH 1101Y Test 2

30 January, 2012
Time: 50 minutes

Instructions

- Show all your work. Legibly, please!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator and an aid sheet.

1. Compute any three (3) of the integrals a-f. [12 $=3 \times 4$ each]
a. $\int_{0}^{1}\left(1-z^{16}\right) d z$
b. $\int \frac{e^{w}+e^{-w}}{2} d w$
c. $\int_{1}^{e} 4 x \ln (x) d x$
d. $\int \frac{\sec ^{2}(\sqrt{x})}{2 \sqrt{x}} d x$
e. $\int_{0}^{\pi / 4} \cos ^{2}(t) d t$
f. $\int \frac{1}{\sqrt{9-x^{2}}} d x$
2. Do any two (2) of a-c. [10 $=2 \times 5$ each]
a. Sketch the region between $y=\sin (\pi x)$ and $y=-1$, for $0 \leq x \leq 1$, and find its area.
b. Find the maximum area of a rectangle whose border has total length 36 .
c. Use the Right-Hand Rule to compute $\int_{0}^{1}(2 x+1) d x$.
3. Do one (1) of \mathbf{a} or \mathbf{b}. [8]
a. A smooth horizontal floor meets a smooth vertical floor at a right angle, and a ladder 5 m long is set with its base on the floor and its top against the wall and begins to slide down. At the instant that the top of the ladder is 3 m above the floor, the top is moving down at $2 \mathrm{~m} / \mathrm{s}$. How is the distance between the base of the ladder and the wall changing at this instant?
b. Sketch the solid obtained by revolving the region below $x+y=1$ and above $y=0$ for $0 \leq x \leq 1$ about the y-axis, and find its volume.
4. Find the domain and any (and all!) intercepts, vertical and horizontal asymptotes, local maxima and minima, and points of inflection of $f(x)=x e^{-x}$, and sketch its graph. [10]
