Trent University

## MATH 1101Y Test 1

17 October, 2011
Time: 50 minutes

## Name: <br> Solutions <br> Student Number: 00101001

Question Mark


Total _ / 30

## Instructions

- Show all your work. Legibly, please!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator and an aid sheet.

1. Do any two (2) of a-c. [10 $=2 \times 5$ each]
a. Find all the intercepts and the location of the vertex of the parabola $y=x^{2}-2 x$ and sketch its graph.
b. Show that $\sin (4 x)=4 \sin (x) \cos ^{3}(x)-4 \sin ^{3}(x) \cos (x)$.
c. Find an algebraic expression for the function $f(x)$ whose graph looks like the sketch on the right:
Hint: Note the missing point!


Solution to a. For the $y$-intercept, we just plug in $x=0$ and work out the corresponding $y$ value: $y=0^{2}-2 \cdot 0=0$. Thus $(0,0)$ is the $y$-intercept.

For the $x$-intercepts, we set $y=0$ and solve for $x$ : $0=x^{2}-2 x=x(x-2)$, so $x=0$ or $x=2$. Thus $(0,0)$ - which is also the $y$-intercept! - and $(2,0)$ are the $x$-intercepts.

For the location of the vertex, we complete the square in $y=x^{2}-2 x$ :

$$
y=x^{2}-2 x=\left(x+\frac{1}{2}(-2)\right)^{2}-\left(\frac{1}{2}(-2)\right)^{2}=(x-1)^{2}-1
$$

It follows that the vertex occurs when $(x-1)^{2}$ is as small as possible; that is, when $x=1$. Since $y=-1$ when $x=1$, the vertex of the parabola is at $(1,-1)$.

Here's a crude sketch:


Solution to $\mathbf{b}$. We will make use of the double-angle formulas for both $\sin (\theta)$ and $\cos (\theta)$ :

$$
\begin{aligned}
\sin (4 x) & =\sin (2 \cdot 2 x)=2 \sin (2 x) \cos (2 x)=2 \cdot 2 \sin (x) \cos (x)\left(\cos (x)-\sin ^{2}(x)\right) \\
& =4\left(\sin (x) \cos ^{3}(x)-\sin ^{3}(x) \cos (x)\right)=4 \sin (x) \cos ^{3}(x)-4 \sin ^{3}(x) \cos (x)
\end{aligned}
$$

Solution to c. Except for the missing point at $x=2$, the graph is that of the straight line with slope -1 that has $y$-intercept $(0,1)$. The equation of this line is $y=-x+1$. To ensure that it is undefined at $x=2$ and unchanged everywhere else, we multiply the right-hand side of the equation of the line by $\frac{x-2}{x-2}$, which is undefined at $x=2$ and equal to 1 everywhere else. Thus the function $f(x)$ whose graph was sketched is $f(x)=(-x+1) \cdot \frac{x-2}{x-2}=\frac{-x^{2}+3 x-2}{x-2}$.
2. Do any two (2) of $\mathbf{a}-\mathbf{c}$. $[12=2 \times 6$ each $]$
a. Determine what kind of discontinuity $f(x)=\frac{x^{3}-x^{2}-2 x}{x+1}$ has at $x=-1$.
b. Compute $\lim _{x \rightarrow 0} \frac{\sec ^{2}(x)-1}{\tan (x)}$.
c. Find all the horizontal asymptote(s) of $f(x)=\frac{x^{2}}{1+x^{2}}$.

Solution to a. We need to compute $\lim _{x \rightarrow-1^{-}} f(x)$ and $\lim _{x \rightarrow-1^{+}} f(x)$ and compare them. Since $\frac{(-1)^{3}-(-1)^{2}-2(-1)}{-1+1}=\frac{0}{0}$ - which is why we do have a discontinuity to deal with - we will need to divide $x+1$ into $x^{3}-x^{2}-2 x$ to be able to compute the limits. (Once we have l'Hôpital's Rule, we'll have a faster way to get the job done ... ) One could do this using long division, but in this case it is faster to just factor $x^{3}-x^{2}-2 x$ because it has an obvious factor, namely $x$ : $x^{3}-x^{2}-2 x=x\left(x^{2}-x-2\right)=x(x-2)(x+1)$ (Factoring $x^{2}-x-2$ into $(x-2)(x+1)$ is left as an exercise for the reader $\left.\ldots:-\right)$

Using this factorization gives

$$
\begin{aligned}
\lim _{x \rightarrow-1^{-}} f(x) & =\lim _{x \rightarrow-1^{-}} \frac{x^{3}-x^{2}-2 x}{x+1}=\lim _{x \rightarrow-1^{-}} \frac{x(x-2)(x+1)}{x+1} \\
& =\lim _{x \rightarrow-1^{-}} x(x-2)=(-1)(-1-3)=(-1)(-4)=4 \\
\text { and } \lim _{x \rightarrow-1^{+}} f(x) & =\lim _{x \rightarrow-1^{+}} \frac{x^{3}-x^{2}-2 x}{x+1}=\lim _{x \rightarrow-1^{+}} \frac{x(x-2)(x+1)}{x+1} \\
& =\lim _{x \rightarrow-1^{+}} x(x-2)=(-1)(-1-3)=(-1)(-4)=4
\end{aligned}
$$

Since both the left- and right-hand limits exist at $x=-1$, and are equal, it follows that $f(x)=\frac{x^{3}-x^{2}-2 x}{x+1}$ has a removable discontinuity at $x=-1$.
Solution to b. Rearranging the trig identity $1+\tan ^{2}(x)=\sec ^{2}(x)$ a little tells us that $\sec ^{2}(x)-1=\tan ^{2}(x)$. It follows that

$$
\lim _{x \rightarrow 0} \frac{\sec ^{2}(x)-1}{\tan (x)}=\lim _{x \rightarrow 0} \frac{\tan ^{2}(x)}{\tan (x)}=\lim _{x \rightarrow 0} \tan (x)=\tan (0)=0 .
$$

Solution to c. We need to compute the limits of $f(x)$ as $x \rightarrow-\infty$ and as $x \rightarrow+\infty$ :

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} f(x) & =\lim _{x \rightarrow-\infty} \frac{x^{2}}{1+x^{2}}=\lim _{x \rightarrow-\infty} \frac{x^{2}}{1+x^{2}} \cdot \frac{1 / x^{2}}{1 / x^{2}}=\lim _{x \rightarrow-\infty} \frac{1}{\frac{1}{x^{2}}+1}=\frac{1}{0+1}=1 \\
\lim _{x \rightarrow+\infty} f(x) & =\lim _{x \rightarrow+\infty} \frac{x^{2}}{1+x^{2}}=\lim _{x \rightarrow+\infty} \frac{x^{2}}{1+x^{2}} \cdot \frac{1 / x^{2}}{1 / x^{2}}=\lim _{x \rightarrow+\infty} \frac{1}{\frac{1}{x^{2}}+1}=\frac{1}{0+1}=1
\end{aligned}
$$

(Note that $\frac{1}{x^{2}} \rightarrow 0$ as $x \rightarrow \pm \infty$.) It follows that $f(x)$ has the line $y=1$ as a horizontal asymptote in both directions.
3. Do one (1) of $\mathbf{a}$ or $\mathbf{b}$. [8]
a. Suppose $f(x)=\left\{\begin{array}{ll}c x+1 & \text { if } x \leq 0 \\ x-c & \text { if } x>0\end{array}\right.$ is continuous at $x=0$. What must $c$ be?
b. Find the inverse function $f^{-1}(x)$ of $f(x)=\ln (\sin (x))-\ln (\cos (x))$.

Solution to a. To be continuous at $x=0$, we need to have $\lim _{x \rightarrow 0^{-}} f(x)=f(0)=$ $\lim _{x \rightarrow 0^{+}} f(x)$. Looking at the definition of $f(x)$, we see that $f(0)=c \cdot 0+1=0+1=1$. Computing the limits, we get:

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}(c x+1)=c \cdot 0+1=0+1=1 \\
& \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}(x-c)=0-c=-c
\end{aligned}
$$

Thus, in order for $f(x)$ to be continuous, we need to have $1=1=-c$, from which it follows that that $c=-1$.
Solution to b. As usual, since $y=f(x)$ if and only if $x=f^{-1}(y)$, we try to solve for $x$ in terms of $y$ in $y=f(x)$. Here goes:

$$
\begin{aligned}
& y=\ln (\sin (x))-\ln (\cos (x))=\ln \left(\frac{\sin (x)}{\cos (x)}\right)=\ln (\tan (x)) \\
\Longleftrightarrow & e^{y}=e^{\ln (\tan (x))}=\tan (x) \\
\Longleftrightarrow & \arctan \left(e^{y}\right)=x
\end{aligned}
$$

It follows that $x=f^{-1}(y)=\arctan \left(e^{y}\right)$, so $f^{-1}(x)=\arctan \left(e^{x}\right)$.

# Too easy? Too hard? Just right? <br> In any case, it's over! 

