Mathematics 1101Y – Calculus I: Functions and calculus of one variable TRENT UNIVERSITY, 2011–2012

Solutions to Assignment #4 Definite integrals with Maple

For this assignment, look up Maple's basic integration command, int, as well as the commands for evaluating an expression as a decimal, evalf, and for solving an equation numerically, fsolve (which works pretty much like solve otherwise).

The latter part of this assignment is concerned with the function $f(x) = e^{-x^2}$, which does not have a nice antiderivative. However, we will start with things you can do by hand for a warmup.

1. Compute $\int_0^1 x^2 dx$ both by hand and using Maple. [2] SOLUTION. By hand:

$$\int_0^1 x^2 \, dx = \left. \frac{x^3}{3} \right|_0^1 = \frac{1^3}{3} - \frac{0^3}{3} = \frac{1}{3} - 0 = \frac{1}{3}$$

Using Maple:

> int(x^2,x=0..1);

 $\frac{1}{3}$

Not much to it either way ...

2. Find the value of t such that $\int_0^t x^2 dx = 9$ both by hand and using Maple. [2] SOLUTION. By hand:

$$\int_0^t x^2 \, dx = \left. \frac{x^3}{3} \right|_0^t = \frac{t^3}{3} - \frac{0^3}{3} = \frac{t^3}{3} \, ,$$

so the problem boils down to solving the equation $\frac{t^3}{3} = 9$. Then $t^3 = 3 \cdot 9 = 27 = 3^3$, so t = 3.

Using Maple:

> fsolve(int(
$$x^2$$
, $x=0..t$)=9,t);

3.

Perhaps just a bit easier with Maple this time.

3. Use Maple to find $\int_0^{\pi} x^2 dx$ to 10 decimal places. [1]

Solution.

> evalf(int(x^2,x=0..Pi));

10.33542556

I'd rather not compute $\frac{1}{3}\pi^3$ to 10 decimal places by hand ...

4. Compute $\int_{-\infty}^{\infty} e^{-x^2} dx$ using Maple. [2]

SOLUTION.

> int(exp(-x^2),x=-infinity..infinity);

 $\sqrt{\pi}$

 e^{-x^2} is a function for which there is no nice formula for the antiderivative ... **5.** Use Maple to find $\int_0^{\pi} e^{-x^2} dx$ to 10 decimal places. [1]

SOLUTION.

> evalf(int(exp(-x²),x=0..Pi));

0.8862190595

I'd *really* rather not try this one by hand by hand \dots

6. Find the value of t such that $\int_{-t}^{t} e^{-x^2} dx = \frac{1}{2} \int_{-\infty}^{\infty} e^{-x^2} dx$, also to 10 decimal places, using Maple. [2] [2]

SOLUTION.

0.4769362762

Whew!

Note: In the "Classic" mode, Maple use Pi and infinity to name π and ∞ , respectively.