Mathematics 1101Y - Calculus I: Functions and calculus of one variable Trent University, 2011-2012

Solutions to Assignment \#4
Definite integrals with Maple
For this assignment, look up Maple's basic integration command, int, as well as the commands for evaluating an expression as a decimal, evalf, and for solving an equation numerically, fsolve (which works pretty much like solve otherwise).

The latter part of this assignment is concerned with the function $f(x)=e^{-x^{2}}$, which does not have a nice antiderivative. However, we will start with things you can do by hand for a warmup.

1. Compute $\int_{0}^{1} x^{2} d x$ both by hand and using Maple. [2]

Solution. By hand:

$$
\int_{0}^{1} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{0} ^{1}=\frac{1^{3}}{3}-\frac{0^{3}}{3}=\frac{1}{3}-0=\frac{1}{3}
$$

Using Maple:

$$
>\operatorname{int}\left(x^{\wedge} 2, x=0 \ldots 1\right) ;
$$

$$
\frac{1}{3}
$$

Not much to it either way ...
2. Find the value of t such that $\int_{0}^{t} x^{2} d x=9$ both by hand and using Maple. [2]

Solution. By hand:

$$
\int_{0}^{t} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{0} ^{t}=\frac{t^{3}}{3}-\frac{0^{3}}{3}=\frac{t^{3}}{3}
$$

so the problem boils down to solving the equation $\frac{t^{3}}{3}=9$. Then $t^{3}=3 \cdot 9=27=3^{3}$, so $t=3$.

Using Maple:

```
    > fsolve(int(x^2,x=0..t)=9,t);
```


3.

Perhaps just a bit easier with Maple this time.
3. Use Maple to find $\int_{0}^{\pi} x^{2} d x$ to 10 decimal places. [1]

Solution.

```
> evalf(int(x^2,x=0..Pi));
```

I'd rather not compute $\frac{1}{3} \pi^{3}$ to 10 decimal places by hand ...
4. Compute $\int_{-\infty}^{\infty} e^{-x^{2}} d x$ using Maple. [2]

Solution.

$$
\begin{array}{r}
>\operatorname{int}\left(\exp \left(-x^{\wedge} 2\right), x=- \text { infinity } . . \text { infinity }\right) ; \\
\sqrt{\pi}
\end{array}
$$

$e^{-x^{2}}$ is a function for which there is no nice formula for the antiderivative ...
5. Use Maple to find $\int_{0}^{\pi} e^{-x^{2}} d x$ to 10 decimal places. [1]

Solution.

```
> evalf(int(exp(-x^2),x=0..Pi));
```

0.8862190595

I'd really rather not try this one by hand by hand...
6. Find the value of t such that $\int_{-t}^{t} e^{-x^{2}} d x=\frac{1}{2} \int_{-\infty}^{\infty} e^{-x^{2}} d x$, also to 10 decimal places, using Maple. [2] [2]
Solution.

$$
\begin{gathered}
>\text { fsolve }\left(\operatorname{int}\left(\exp \left(-x^{\wedge} 2\right), x=-t . . t\right)=(1 / 2) *\left(\operatorname { i n t } \left(\exp \left(-x^{\wedge} 2\right),\right.\right.\right. \\
x=-\operatorname{infinity} \ldots \text { infinity })), t) ; \\
0.4769362762
\end{gathered}
$$

Whew!

Note: In the "Classic" mode, Maple use Pi and infinity to name π and ∞, respectively.

