
Mathematics 1101Y – Calculus I: Functions and calculus of one variable
Trent University, 2011–2012

Solution to Assignment #3
My name is Blond, Thames Blond.∗

Thames Blond, playboy heir to the Pale River Ale fortune and not-so-secret agent
of MI7, is cruising along one of Saskatchewan’s famously straight roads in his BMW at
its top speed of 200 km/h, approaching the point where one of Saskatchewan’s famously
straight railroads crosses the road at a right angle. The last car of a train is passing the
crossing at a speed of 100 km/h just as Blond is 1 km away. At this instant, Blond spots
the infamous Dr. Yes looking out the back of that last train car. He immediately swerves
to follow†, keeping his BMW headed towards the last car of the train until he catches up.

1. If the train and Blond maintain their speeds of 100 km/h and 200 km/h, how far from
the crossing does Blond catch up with the train? [10]

Hint : Supposing that the road lies along the x-axis and the railroad track along the
y-axis, show that the BMW’s path is the graph of a function satisfying the differential

equation 2x d2y
dx2 =

√
1 +

(
dy
dx

)2
. Solve this equation (Maple’s dsolve command for solving

differential equations may come in handy), assuming that y = 0 and dy
dx = 0 when x = 1,

and take it from there . . .

Solution. The solution breaks down into two parts: getting to the differential equation
mentioned in the hint and then solving it. Since the first part proved more difficult than
anticipated, its relative value was (originally 5/10) was vastly reduced (to 1/10) and full
credit for the first part was given to any reasonable attempt to start a solution. A complete
solution of getting to the differential equation is nevertheless given below.

Just for fun – and to show off an interesting application of something we will learn
later – we will obtain the differential equation with the help of an integral formula. This
formula, which you can find in §8.1 of the textbook, states that the length of the curve
given y = f(x) for a ≤ x ≤ b is

arc-length =

∫ b

a

√
1 +

(
dy

dx

)2

dx =

∫ b

a

√
1 + (f ′(x))

2
dx .

Setting up the axes as suggested in the hint, consider the situation at the instant that
Blond’s car is at the point (x, y):

∗ Apologies in advance to Ian Fleming and a certain prairie province.
† Remember that Saskatchewan is famously flat . . .
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Note that the train is moving upward on the y-axis, Blond’s BMW is pointed right at
the end of the train, and his cars moves in the direction it is pointed. (We hope it does,
anyway!). So the end of the train must be at the point (0, u) where the tangent line to the
curve traced out by the BMW intercepts the y-axis. The tangent line to the curve, at the
point (x, y), has slope dy

dx . You can check for yourselves that the line with slope m passing
through the point (c, d) intercepts the y-axis at the point (0, d − cm). It follows that in
our case

u = y − x
dy

dx
.

Note that at the instant Blond is at (x, y), the train has travelled a distance of u
km, i.e. from (0, 0) to (0, u), since the instant that Blond spotted Dr. Yes and took off
in pursuit. In the same period, Blond has travelled a distance equal to the arc length of
the curve y = y(x) traced by his BMW from x to 1. Plugging that into the appropriate
integral formula gives

arc length =

∫ 1

x

√
1−

(
dy

dx

)2

dx ,

with a slight abuse of notation. (Namely?) Since Blond’s BMW is moving at twice the
speed of the train, it covers twice the distance in a given period of time, so 2u is equal to
the arc length above. This gives us the differential/integral equation:

2

(
y − x

dy

dx

)
=

∫ 1

x

√
1−

(
dy

dx

)2

dx

Differentiating both sides of this equation, with the help of the Fundamental Theorem of
Calculus on the right-hand side, gives

2
dy

dx
− 2 · 1 · dy

dx
− 2x

d2y

dx2
= −

√
1−

(
dy

dx

)2

,

which, after simplifying, amounts to the desired differential equation:

2x
d2y

dx2
=

√
1 +

(
dy

dx

)2

Whew!
Now all we need to do is to solve solve this differential equation. Per the set-up

described in the hint, we get to assume that when x = 1, y = 0 and dy
dx = 0. Solving

“second-order” differential equations (those involving second derivatives) is usually much
harder than solving first-order differential equations. For us, this means that it will be
harder to figure out just how to present it to Maple without choking on some point of
trivia in how Maple works.
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We can get around this problem, at least in part, by solving for dy
dx – remember that

d2y
dx2 = d

dx

(
dy
dx

)
– and then getting y by integrating dy

dx . If we set z = dy
dx , then dz

dx = d2y
dx2 ,

so we can rewrite our differential equation as

2x
dz

dx
=
√

1 + z2 .

This is a first-order differential equation with “initial condition” z = dy
dx = 0 when x = 1.

We plug it into Maple’s specialized command dsolve for solving differential equations:

> dsolve(2*x*(diff(z(x),x))=sqrt(1+z(x)^2),z(1) = 0);

z(x) = sinh

(
1

2
ln(x)

)

That is,
dy

dx
= z = sinh

(
1

2
ln(x)

)
.

We plug this (also first-order!) equation, with the initial condition y = 0 when x = 1
into Maple too:

> dsolve(diff(y(x),x)=sinh((1/2)*ln(x)),y(1)=0);

y(x) =

(
1

3
(−3 + x)

)√
x +

2

3

We can now (finally!) answer the question. From the initial set-up, Blond catches up
with the train when his car reaches the y-axis. When x = 0, y = y(0) =

(
1
3 (−3 + 0)

)√
0 +

2
3 = 2

3 . Thus Blond catches up with the train 2
3 km from the crossing. �

A solution by hand of the differential equation.
2x dz

dx =
√

1 + z2 is a separable first-order differential equation, for which type there is
a recipe to cook to order. Rearrange the equation to get

dz√
1 + z2

=
dx

2x
,

(separating the variables on either side the = sign) and then integrate each side (with
respect to z and x, respectively) to get

ln
(
z +

√
1 + z2

)
=

∫
dz√

1 + z2
=

∫
dx

2x
= ln

(√
x
)

+ C ,

where C is some constant. This can be done with a suitable trigonometric substitution on
the left-hand side, or just by looking it up in the table of integrals on the inside cover of
the textbook.

3



Exponentiating both sides of the resulting equation now gives

z +
√

1 + z2 = eln(z+
√
1+z2) = eln(

√
x)+C = K

√
x ,

where K = eC . Since z = dy
dx = 0 when x = 1, it follows that K = 1.

We now have to solve z+
√

1 + z2 =
√
x for z in terms of x. Squaring both sides gives

z2 + 2z
√

1 + z2 +
(
1 + z2

)
= x ,

which unfortunately still involves
√

1 + z2. We get around this by rearranging the equation
to get

2z
√

1 + z2 = x− 2z2 − 1 ,

and then squaring to get

4z2
(
1 + z2

)
= 4z2 + 4z4 = x2 − 4xz2 − 2x + 4z4 + 4z2 + 1 ,

which simplifies to
0 = x2 − 4xz2 − 2x + 1 .

Rearranging now gives
4xz2 = x2 − 2x + 1 = (x− 1)2 ,

from which it follows that

dy

dx
= z =

x− 1

2
√
x

=

√
x

2
− 1

2
√
x
.

[Whew!]
We still have to integrate z = dy

dx to get y as a function of x:

y =

∫ (√
x

2
− 1

2
√
x

)
dx =

x3/2

3
−
√
x + D

Since y = 0 when x = 1, a little arithmetic tells us that D = 2
3 , so

y =
x3/2

3
−
√
x +

2

3
.

This, allowing for a little algebra, is what Maple gave us. �
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