Mathematics 1101Y - Calculus I: Functions and calculus of one variable Trent University, 2011-2012
 Assignment \#3
 My name is Blond, Thames Blond.*
 Due on Wednesday, 7 December, 2011.

Thames Blond, playboy heir to the Pale River Ale fortune and not-so-secret agent of MI7, is cruising along one of Saskatchewan's famously straight roads in his BMW at its top speed of $200 \mathrm{~km} / \mathrm{h}$, approaching the point where one of Saskatchewan's famously straight railroads crosses the road at a right angle. The last car of a train is passing the crossing at a speed of $100 \mathrm{~km} / \mathrm{h}$ just as Blond is 1 km away. At this instant, Blond spots the infamous Dr. Yes looking out the back of that last train car. He immediately swerves to follow ${ }^{\dagger}$, keeping his BMW headed towards the last car of the train until he catches up.

1. If the train and Blond maintain their speeds of $100 \mathrm{~km} / \mathrm{h}$ and $200 \mathrm{~km} / \mathrm{h}$, how far from the crossing does Blond catch up with the train? [10]

Hint: Supposing that the road lies along the x-axis and the railroad track along the y-axis, show that the BMW's path is the graph of a function satisfying the differential equation $2 x \frac{d^{2} y}{d x^{2}}=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}$. Solve this equation (Maple's dsolve command for solving differential equations may come in handy), assuming that $y=0$ and $\frac{d y}{d x}=0$ when $x=1$, and take it from there ...

[^0]
[^0]: * Apologies in advance to Ian Fleming and a certain prairie province.
 \dagger Remember that Saskatchewan is famously flat ...

