Mathematics 1101Y - Calculus I: functions and calculus of one variable

 Trent University, 2010-2011
Quizzes

Quiz \#1. Friday, 24 Monday, 27 September, 2010. (10 minutes)

1. Find the location of the tip of the parabola $y=2 x^{2}+2 x-12$, as well as its x - and y-intercepts. [5]

Quiz \#2. Friday, 1 October, 2010. (10 minutes)

1. Solve the equation $e^{2 x}-2 e^{x}+1=0$ for x.

Hint: Solve for e^{x} first ...
Quiz \#3. Friday, 8 October, 2010. (10 minutes)

1. Evaluate the limit $\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x-1}$, if it exists. [5]

Quiz \#4. Friday, 15 October, 2010. (10 minutes)

1. Use the limit definition of the derivative to compute $f^{\prime}(2)$ if $f(x)=x^{2}+3 x+1$. [5]

Quiz \#5. Friday, 22 October Monday, 1 November, 2010. (10 minutes)

1. Find $f^{\prime}(x)$ if $f(x)=\frac{x^{2}+2 x}{x^{2}+2 x+1}$. Simplify $f^{\prime}(x)$ as much as you reasonably can. [5]

Quiz \#6. Friday, 5 November, 2010. (10 minutes)

1. Find $\frac{d y}{d x}$ if $y=\sqrt{x+\arctan (x)}$. [5]

Quiz \#7. Friday, 12 November, 2010. (10 minutes)

1. Find the maximum and minimum of $f(x)=\frac{x}{1+x^{2}}$ on the interval $[-2,2]$. [5]

Quiz \#8. Friday, 26 November, 2010. (10 minutes)

1. Find an antiderivative of $f(x)=4 x^{3}-3 \cos (x)+\frac{1}{x}$. [5]

Quiz \#9. Friday, 3 December, 2010. (10 minutes)

1. Compute the definite integral $\int_{0}^{1}(2 x+1) d x$ using the Right-hand Rule. [5]

Hint: You may assume that $\sum_{k=1}^{n} k=1+2+3+\cdots+n=\frac{n(n+1)}{2}$.
Quiz \#10. Friday, 10 December, 2010. (10 minutes)

1. Find the area between the graphs of $f(x)=\sin (x)$ and $g(x)=\frac{2 x}{\pi}$ for $0 \leq x \leq \frac{\pi}{2}$. [5]

Quiz \#11. Friday, 14 January, 2011. (10 minutes)

1. Compute $\int_{0}^{\pi / 2} \cos ^{3}(x) d x$. [5]

Quiz \#12. Friday, 21 January, 2011. (10 minutes)

1. Compute $\int \tan ^{3}(x) \sec (x) d x$. [5]

Quiz \#13. Friday, 28 January, 2011. (10 minutes)

1. Compute $\int \frac{1}{\sqrt{4+x^{2}}} d x$. [5]

Quiz \#14. Friday, 4 February, 2011. (15 minutes)

1. Compute $\int \frac{4 x^{2}+3 x}{(x+2)\left(x^{2}+1\right)} d x$. [5]

Quiz \#15. Some time or other, 2011. (15 minutes)

1. Find the area of the surface obtained by revolving the curve $y=\sqrt{1-x^{2}}$, where $0 \leq x \leq 1$, about the y-axis. [5]
Quiz \#16. Some time or other, 2011. (12 minutes)
2. Sketch the region bounded by $r=\tan (\theta), \theta=0$, and $\theta=\frac{\pi}{4}$ in polar coordinates and find its area. [5]
Quiz \#17. Friday, 11 March, 2011. (12 minutes)
3. Find the arc-length of the parametric curve $x=\sec (t), y=\ln (\sec (t)+\tan (t))$, where $0 \leq t \leq \frac{\pi}{4}$.
Quiz \#18. Friday, 18 March, 2011. (10 minutes)
4. Compute $\lim _{n \rightarrow \infty} \frac{n^{2}}{e^{n}}$. [5]

Quiz \#19. Friday, 25 March, 2011. (10 minutes)

1. Determine whether the series $\sum_{n=0}^{\infty} \frac{1}{n^{2}+2^{n}}$ converges or diverges. [5]

Quiz \#20. Friday, 1 April, 2011. (15 minutes)

1. Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n} \ln (n)}{n}$ converges absolutely, converges conditionally, or diverges.

Quiz $\#$ 21. Friday, 8 April, 2011. (10 minutes)

1. Determine whether the series $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$ converges or diverges.
