Mathematics 1101Y-Calculus I: functions and calculus of one variable Trent University, 2010-2011

Solutions to the Quizzes

Quiz \#1. Friday, 24 Monday, 27 September, 2010. (10 minutes)

1. Find the location of the tip of the parabola $y=2 x^{2}+2 x-12$, as well as its x - and y-intercepts. [5]
Solution. Note that since x^{2} has a positive coefficient, this parabola opens upwards.
To find the location of the tip of the parabola, we complete the square in the quadratic expression defining the parabola:

$$
\begin{aligned}
y & =2 x^{2}+2 x-12 \\
& =2\left(x^{2}+x\right)-12 \\
& =2\left[x^{2}+2 \frac{1}{2} x+\left(\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}\right]-12 \\
& =2\left[x^{2}+2 \frac{1}{2} x+\left(\frac{1}{2}\right)^{2}\right]-2\left(\frac{1}{2}\right)^{2}-12 \\
& =2\left(x+\frac{1}{2}\right)^{2}-\frac{1}{2}-12 \\
& =2\left(x+\frac{1}{2}\right)^{2}-\frac{25}{2}
\end{aligned}
$$

It follows that the tip of the parabola occurs when $x+\frac{1}{2}=0$, i.e. when $x=-\frac{1}{2}$, at which point $y=-\frac{25}{2}$. Thus thus the tip of the parabola is at the point $\left(-\frac{1}{2},-\frac{25}{2}\right)$.

To find the y-intercept of the parabola, we simply plug $x=0$ into the quadratic expression defining the parabola:

$$
y=2 \cdot 0^{2}+2 \cdot 0-12=0+0-12=12
$$

Thus the y-intercept of the parabola is the point $(0,-12)$.
To find the x-intercept(s) of the parabola, we apply the quadratic formula to find the roots of the quadratic expression defining the parabola: $2 x^{2}+2 x-12=0$ exactly when

$$
\begin{aligned}
x & =\frac{-2 \pm \sqrt{2^{2}-4 \cdot 2 \cdot(-12)}}{2 \cdot 2}=\frac{-2 \pm \sqrt{4-(-96)}}{4} \\
& =\frac{-2 \pm \sqrt{100}}{4}=\frac{-2 \pm 10}{4}=\frac{-1 \pm 5}{2}
\end{aligned}
$$

i.e. exactly when $x=\frac{4}{2}=2$ or $x=-\frac{6}{2}=-3$. It follows that the parabola has its x-intercepts at $x=2$ and $x=-3$, i.e. at the points $(-3,0)$ and $(2,0)$.

Quiz \#2. Friday, 1 October, 2010. (6 minutes)

1. Solve the equation $e^{2 x}-2 e^{x}+1=0$ for x.

Hint: Solve for e^{x} first ...
Solution. Recall that $e^{2 x}=\left(e^{x}\right)^{2}$, so we can rewrite the given equation as $\left(e^{x}\right)^{2}-2 e^{x}+1=$ 0 . Following the hint, we solve for e^{x} using the quadratic equation:

$$
e^{x}=\frac{-(-2) \pm \sqrt{(-2)^{2}-4 \cdot 1 \cdot 1}}{2 \cdot 1}=\frac{2 \pm \sqrt{4-4}}{2}=\frac{2 \pm 0}{2}=1
$$

Thus $x=\ln \left(e^{x}\right)=\ln (1)=0$.
Quiz \#3. Friday, 8 October, 2010. (10 minutes)

1. Evaluate the limit $\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x-1}$, if it exists. [5]

Solution. We factor the numerator and simplify:

$$
\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x-1}=\lim _{x \rightarrow 1} \frac{(x-1)(x+2)}{x-1}=\lim _{x \rightarrow 1}(x+2)=1+2=3
$$

In case of problems factoring this by sight, one could always apply the quadratic formula. The roots of $x^{2}+x-2$ are:

$$
\frac{-1 \pm \sqrt{1^{2}-4 \cdot 1 \cdot(-2)}}{2 \cdot 1}=\frac{-1 \pm \sqrt{9}}{2}=\frac{-1 \pm 3}{2}=+1 \text { or }-2
$$

It follows that $x^{2}+x-2=(x-1)(x-(-2))=(x-1)(x+2)$.
Quiz \#4. Friday, 15 October, 2010. (10 minutes)

1. Use the limit definition of the derivative to compute $f^{\prime}(2)$ if $f(x)=x^{2}+3 x+1$. [5]

Solution. Here goes!

$$
\begin{aligned}
f^{\prime}(2) & =\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(2+h)^{2}+3(2+h)+1\right]-\left[2^{2}+3 \cdot 2+1\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[4+4 h+h^{2}+6+3 h+1\right]-[4+6+1]}{h} \\
& =\lim _{h \rightarrow 0} \frac{h^{2}+7 h}{h} \\
& =\lim _{h \rightarrow 0}(h+7)=0+7=7 \quad \text {. }
\end{aligned}
$$

Quiz \#5. Friday, 22 October Monday, 1 November, 2010. (10 minutes)

1. Find $f^{\prime}(x)$ if $f(x)=\frac{x^{2}+2 x}{x^{2}+2 x+1}$. Simplify your answer as much as you reasonably can. [5]

Solution. The Quotient Rule followed by algebra:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\frac{d}{d x}\left(x^{2}+2 x\right) \cdot\left(x^{2}+2 x+1\right)-\left(x^{2}+2 x\right) \cdot \frac{d}{d x}\left(x^{2}+2 x+1\right)}{\left(x^{2}+2 x+1\right)^{2}} \\
& =\frac{(2 x+2)\left(x^{2}+2 x+1\right)-\left(x^{2}+2 x\right)(2 x+2)}{\left(x^{2}+2 x+1\right)^{2}} \\
& =\frac{2(x+1)(x+1)^{2}-\left(x^{2}+2 x\right) 2(x+1)}{\left((x+1)^{2}\right)^{2}} \\
& =\frac{2(x+1)^{3}-\left(x^{2}+2 x\right) 2(x+1)}{(x+1)^{4}} \\
& =\frac{2(x+1)^{2}-2\left(x^{2}+2 x\right)}{(x+1)^{3}} \\
& =\frac{2\left(x^{2}+2 x+1\right)-2\left(x^{2}+2 x\right)}{(x+1)^{3}} \\
& =\frac{2}{(x+1)^{3}}
\end{aligned}
$$

Quiz \#6. Friday, 5 November, 2010. (10 minutes)

1. Find $\frac{d y}{d x}$ if $y=\sqrt{x+\arctan (x)}$. 5]

Solution. This is a job for the Chain Rule. Note first that, using the Power Rule, $\frac{d}{d t} \sqrt{t}=\frac{d}{d t} t^{1 / 2}=\frac{1}{2} t^{-1 / 2}=\frac{1}{2 \sqrt{t}}$. Letting $t=x+\arctan (x)$ and applying the Chain Rule gives:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d t} \cdot \frac{d t}{d x}=\left(\frac{d}{d t} \sqrt{t}\right) \cdot \frac{d t}{d x}=\frac{1}{2 \sqrt{t}} \cdot \frac{d t}{d x} \\
& =\frac{1}{2 \sqrt{x+\arctan (x)}} \cdot \frac{d}{d x}(x+\arctan (x)) \\
& =\frac{1}{2 \sqrt{x+\arctan (x)}} \cdot\left(\frac{d x}{d x}+\frac{d}{d x} \arctan (x)\right) \\
& =\frac{1}{2 \sqrt{x+\arctan (x)}} \cdot\left(1+\frac{1}{1+x^{2}}\right)
\end{aligned}
$$

There's not much one can to do to meaningfully simplify this. A little algebra could give you something like $\frac{d y}{d x}=\frac{2+x^{2}}{2\left(1+x^{2}\right) \sqrt{x+\arctan (x)}}$, but it's not clear that's an improvement.

Quiz \#7. Friday, 12 November, 2010. (10 minutes)

1. Find the maximum and minimum of $f(x)=\frac{x}{1+x^{2}}$ on the interval [-2,2]. [5]

Solution. We compute $f^{\prime}(x)$ using the Quotient Rule:

$$
f^{\prime}(x)=\frac{\left(\frac{d}{d x} x\right)\left(1+x^{2}\right)-x \frac{d}{d x}\left(1+x^{2}\right)}{\left(1+x^{2}\right)^{2}}=\frac{1\left(1+x^{2}\right)-x \cdot 2 x}{\left(1+x^{2}\right)^{2}}=\frac{1-x^{2}}{\left(1+x^{2}\right)^{2}}
$$

Note that the denominator of $f^{\prime}(x)$ is never 0 because $1+x^{2} \geq 1$ for all x, so $f^{\prime}(x)$ is defined for all x in the interval $[-2,2] . f^{\prime}(x)=\frac{1-x^{2}}{\left(1+x^{2}\right)^{2}}=0$ exactly when $1-x^{2}=0$. It follows that the critical points of $f(x)$ are $x= \pm 1$, both of which in the interval $[-2,2]$.

We compare the values of $f(x)$ at the critical points and the endpoints of the interval:

$$
\begin{array}{cc}
x & f(x)=\frac{x}{1+x^{2}} \\
-2 & \frac{-2}{1+(-2)^{2}}=-\frac{2}{5} \\
-1 & \frac{-1}{1+(-1)^{2}}=-\frac{1}{2} \\
1 & \frac{1}{1+1^{2}}=\frac{1}{2} \\
2 & \frac{2}{1+2^{2}}=\frac{2}{5}
\end{array}
$$

Since $-\frac{1}{2}<-\frac{2}{5}<\frac{2}{5}<\frac{1}{2}$, it follows that the maximum of $f(x)=\frac{x}{1+x^{2}}$ on the interval $[-2,2]$ is $f(1)=\frac{1}{2}$ and the minimum is $f(-1)=-\frac{1}{2}$.

Quiz \#8. Friday, 26 November, 2010. (10 minutes)

1. Find an antiderivative of $f(x)=4 x^{3}-3 \cos (x)+\frac{1}{x}$. [5]

Solution. This is mainly an exercise in memorizing basic rules about antiderivatives and the antiderivatives of standard functions. Using the indefinite integral notation for antiderivatives we get:

$$
\begin{aligned}
\int\left(4 x^{3}-3 \cos (x)+\frac{1}{x}\right) d x & =4 \int x^{3} d x-3 \int \cos (x) d x+\int \frac{1}{x} d x \\
& =4 \cdot \frac{x^{3+1}}{3+1}-3 \sin (x)+\ln (x)+C \\
& =x^{4}-3 \sin (x)+\ln (x)+C
\end{aligned}
$$

Since we just asked for an antiderivative, any value of C - including 0 - is fine here.

Quiz \#9. Friday, 3 December, 2010. (10 minutes)

1. Compute the definite integral $\int_{0}^{1}(2 x+1) d x$ using the Right-hand Rule. [5]

Hint: You may assume that $\sum_{k=1}^{n} k=1+2+3+\cdots+n=\frac{n(n+1)}{2}$.
Solution. Recall that the Right-hand Rule formula is:

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} \frac{b-a}{n} f\left(a+k \frac{b-a}{n}\right)
$$

We plug $a=0, b=1$, and $f(x)=2 x+1$ into this formula and grind away:

$$
\begin{aligned}
\int_{0}^{1}(2 x+1) d x & =\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} \frac{1-0}{n} f\left(0+k \frac{1-0}{n}\right)=\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} \frac{1}{n} f\left(\frac{k}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{\infty} f\left(\frac{k}{n}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{\infty}\left(2 \frac{k}{n}+1\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}\left[\left(\sum_{k=1}^{\infty} \frac{2 k}{n}\right)+\left(\sum_{k=1}^{\infty} 1\right)\right] \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}\left[\left(\frac{2}{n} \sum_{k=1}^{\infty} k\right)+\left(\sum_{k=1}^{\infty} 1\right)\right] \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}\left[\frac{2}{n} \cdot \frac{n(n+1)}{2}+n\right] \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}[(n+1)+n] \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}[2 n+1]=\lim _{n \rightarrow \infty}\left[\frac{2 n}{n}+\frac{1}{n}\right] \\
& =\lim _{n \rightarrow \infty}\left[2+\frac{1}{n}\right]=2+0=2
\end{aligned}
$$

Quiz \#10. Friday, 10 December, 2010. (10 minutes)

1. Find the area between the graphs of $f(x)=\sin (x)$ and $g(x)=\frac{2 x}{\pi}$ for $0 \leq x \leq \frac{\pi}{2}$. . 5]

Solution. Note that $f(0)=0=g(0)$ and $f\left(\frac{\pi}{2}\right)=g\left(\frac{\pi}{2}\right)=1$. Between these points $f(x) \geq g(x)$ - sketch the graphs to convince yourself, if necessary - so the area between them is:

$$
\begin{aligned}
\int_{0}^{\pi / 2}(f(x)-g(x)) d x & =\int_{0}^{\pi / 2}\left(\sin (x)-\frac{2 x}{\pi}\right) d x \\
& =\left.\left(-\cos (x)-\frac{2}{\pi} \cdot \frac{x^{2}}{2}\right)\right|_{0} ^{\pi / 2} \\
& =\left(-\cos (\pi / 2)-\frac{(\pi / 2)^{2}}{\pi}\right)-\left(-\cos (0)-\frac{0^{2}}{\pi}\right) \\
& =\left(-0-\frac{\pi}{4}\right)-(-1-0) \\
& =-\frac{\pi}{4}+1=1-\frac{\pi}{4}
\end{aligned}
$$

Quick sanity check: $\pi<4$, so $\frac{\pi}{4}<1$, so $1-\frac{\pi}{4}$ is positive, as an area should be.
Quiz \#11. Friday, 14 January, 2011. (10 minutes)

1. Compute $\int_{0}^{\pi / 2} \cos ^{3}(x) d x$. [5]

Solution. This can be done pretty quickly using the appropriate reduction formula or integration by parts, but it's also easy to do by a combination of the trig identity $\cos ^{2}(x)=1-\sin ^{2}(x)$ and substitution:

$$
\begin{aligned}
\int_{0}^{\pi / 2} \cos ^{3}(x) d x & =\int_{0}^{\pi / 2} \cos ^{2}(x) \cos (x) d x \\
& =\int_{0}^{\pi / 2}\left(1-\sin ^{2}(x)\right) \cos (x) d x
\end{aligned}
$$

Substitute $u=\sin (x)$, so $d u=\cos (x) d x$, and change the limits: $\begin{array}{lcc}x & 0 & \pi / 2 \\ u & 0 & 1\end{array}$.
$=\int_{0}^{1}\left(1-u^{2}\right) d u$
$=\left.\left(u-\frac{u^{3}}{3}\right)\right|_{0} ^{1}$
$=\left(1-\frac{1^{3}}{3}\right)-\left(0-\frac{0^{3}}{3}\right)$
$=\frac{2}{3}-0=\frac{2}{3}$

Quiz \#12. Friday, 21 January, 2011. (10 minutes)

1. Compute $\int \tan ^{3}(x) \sec (x) d x$. [5]

Solution. There are other ways to pull this off, but the following use of the identity $\tan ^{2}(x)=\sec ^{2}(x)-1$ and substitution is pretty quick:

$$
\begin{aligned}
\int \tan ^{3}(x) \sec (x) d x= & \int \tan ^{2}(x) \tan (x) \sec (x) d x \\
= & \int\left(\sec ^{2}(x)-1\right) \sec (x) \tan (x) d x \\
& \text { Substitute } u=\sec (x), \text { so } d u=\sec (x) \tan (x) d x \\
= & \int\left(u^{2}-1\right) d x \\
= & \frac{1}{3} u^{3}-u+C \\
= & \frac{1}{3} \sec ^{3}(x)-\sec (x)+C
\end{aligned}
$$

Quiz \#13. Friday, 28 January, 2011. (10 minutes)

1. Compute $\int \frac{1}{\sqrt{4+x^{2}}} d x$. [5]

Solution. We'll use the trigonometric substitution $x=2 \tan (\theta)$, so $d x=2 \sec ^{2}(\theta) d \theta$, and also $\tan (\theta)=\frac{x}{2}$ and $\sec (\theta)=\sqrt{\sec ^{2}(\theta)}=\sqrt{1+\tan ^{2}(\theta)}=\sqrt{1+\frac{x^{2}}{4}}$. (We'll need these last when substituting back.)

$$
\begin{aligned}
\int \frac{1}{\sqrt{4+x^{2}}} d x & =\int \frac{1}{\sqrt{4+(2 \tan (\theta))^{2}}} 2 \sec ^{2}(\theta) d \theta \\
& =\int \frac{2 \sec ^{2}(\theta)}{\sqrt{4+4 \tan ^{2}(\theta)}} d \theta=\int \frac{2 \sec ^{2}(\theta)}{\sqrt{4\left(1+\tan ^{2}(\theta)\right)}} d \theta \\
& =\frac{2}{\sqrt{4}} \int \frac{\sec ^{2}(\theta)}{\sqrt{1+\tan ^{2}(\theta)}} d \theta=\frac{2}{2} \int \frac{\sec ^{2}(\theta)}{\sqrt{\sec ^{2}(\theta)}} d \theta \\
& =\int \frac{\sec ^{2}(\theta)}{\sec (\theta)} d \theta=\int \sec (\theta) d \theta \\
& =\ln (\sec (\theta)+\tan (\theta))+C \\
& =\ln \left(\sqrt{1+\frac{x^{2}}{4}}+\frac{x}{2}\right)+C
\end{aligned}
$$

Quiz \#14. Friday, 4 February, 2011. (15 minutes)

1. Compute $\int \frac{4 x^{2}+3 x}{(x+2)\left(x^{2}+1\right)} d x$. [5]

Solution. This is a job for partial fractions. Note that the denominator of the integrand, $(x+2)\left(x^{2}+1\right)$, come pre-factored into linear factor and irreducible quadratic factors. ($x^{2}+1$ doesn't factor any further because it has no roots, since $x^{2}+1 \geq 1>0$ for all x.) It follows that

$$
\frac{4 x^{2}+3 x}{(x+2)\left(x^{2}+1\right)}=\frac{A}{x+2}+\frac{B x+C}{x^{2}+1}
$$

for some constants A, B, and C. To determine these constants we put the right-hand side of the above equation over the common denominator

$$
\begin{aligned}
\frac{A}{x+2}+\frac{B x+C}{x^{2}+1} & =\frac{A\left(x^{2}+1\right)+(B x+C)(x+2)}{(x+2)\left(x^{2}+1\right)} \\
& =\frac{A x^{2}+A+B x^{2}+2 B x+C x+2 C}{(x+2)\left(x^{2}+1\right)} \\
& =\frac{(A+B) x^{2}+(2 B+C) x+(A+2 C)}{(x+2)\left(x^{2}+1\right)}
\end{aligned}
$$

and then equate numerators

$$
4 x^{2}+3 x=(A+B) x^{2}+(2 B+C) x+(A+2 C)
$$

to obtain a set of three linear equations in A, B, and C :

$$
\begin{aligned}
A+B & =4 \\
2 B+C & =3 \\
A & +2 C
\end{aligned}=0
$$

These equations can be solved in a variety of ways; we will do so using substitution. Solving the third equation for A gives $A=-2 C$. Substituting this into the first equation gives $B-2 C=4$; solving this for B now gives $B=4+2 C$. Substituting the last into the second equation now gives $2(4+2 C)+C=3$, i.e. $8+5 C=3$, so $5 C=3-8=-5$, so $C=-5 / 5=-1$. It follows that $B=4+2 C=4+2(-1)=2$ and $A=-2 C=-2(-1)=2$.

Thus

$$
\begin{aligned}
\int \frac{4 x^{2}+3 x}{(x+2)\left(x^{2}+1\right)} d x & =\int\left(\frac{2}{x+2}+\frac{2 x-1}{x^{2}+1}\right) d x \\
& =\int \frac{2}{x+2} d x+\int \frac{2 x-1}{x^{2}+1} d x \\
& =\int \frac{2}{x+2} d x+\int \frac{2 x}{x^{2}+1} d x-\int \frac{1}{x^{2}+1} d x
\end{aligned}
$$

We handle the three parts separately. In the first, we use the substitution $u=x+2$, so $d u=d x$. In the second, we use the substitution $w=x^{2}+1$, so $d w=2 x d x$. In the third, we recollect that $\frac{1}{x^{2}+1}$ is the derivative of $\arctan (x)$. Now

$$
\begin{aligned}
\int \frac{4 x^{2}+3 x}{(x+2)\left(x^{2}+1\right)} d x & =\int \frac{2}{x+2} d x+\int \frac{2 x}{x^{2}+1} d x-\int \frac{1}{x^{2}+1} d x \\
& =2 \int \frac{1}{u} d u+\int \frac{1}{w} d w+\arctan (x) \\
& =2 \ln (u)+\ln (w)+\arctan (x)+C
\end{aligned}
$$

Since the last integral sign has disappeared, the generic constant must now show up. Substituting back gives:

$$
=2 \ln (x+2)+\ln \left(x^{2}+1\right)+\arctan (x)+C
$$

Whew!

Quiz \#15. Friday, 18 February, 2011. (15 minutes)

1. Sketch the surface obtained by revolving the curve $y=\ln (x), 1 \leq x \leq e$, about the y-axis, and find its area. [5]

Hint: You may find it convenient to just use the fact that

$$
\int \sec ^{3}(\theta) d \theta=\frac{1}{2} \tan (\theta) \sec (\theta)+\frac{1}{2} \ln (\tan (\theta)+\sec (\theta))+C
$$

instead of having to work it out from scratch.
Solution. Here's a sketch of the surface, albeit I cheated a little by starting with a graph of $y=\ln (x)$ drawn by a computer.

Note that we only want the part that come from revolving the part of $y=\ln (x)$ for $1 \leq x \leq e$.

To find the area of this surface, we use the usual formula for the area of a surface of revolution obtained by revolving a curve about the y-axis:

$$
\begin{aligned}
\int_{1}^{e} 2 \pi x \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x & =2 \pi \int_{1}^{e} x \sqrt{1+\left(\frac{d}{d x} \ln (x)\right)^{2}} d x=2 \pi \int_{1}^{e} x \sqrt{1+\left(\frac{1}{x}\right)^{2}} d x \\
& =2 \pi \int_{1}^{e} x \sqrt{1+\frac{1}{x^{2}}} d x=2 \pi \int_{1}^{e} \sqrt{x^{2}\left(1+\frac{1}{x^{2}}\right)} d x \\
& =2 \pi \int_{1}^{e} \sqrt{x^{2}+1} d x
\end{aligned}
$$

Substitute $x=\tan (\theta)$, so $d x=\sec ^{2}(\theta) d \theta$,
keep the old limits and substitute back.

$$
\begin{aligned}
& =2 \pi \int_{x=1}^{x=e} \sqrt{\tan ^{2}(\theta)+1} \sec ^{2}(\theta) d \theta \\
& =2 \pi \int_{x=1}^{x=e} \sqrt{\sec ^{2}(\theta)} \sec ^{2}(\theta) d \theta=2 \pi \int_{x=1}^{x=e} \sec ^{3}(\theta) d \theta
\end{aligned}
$$

$$
\text { Use the hint! Note that } \sec (\theta)=\sqrt{\tan ^{2}(\theta)+1}=\sqrt{x^{2}+1}
$$

$$
=\left.2 \pi\left[\frac{1}{2} \tan (\theta) \sec (\theta)+\frac{1}{2} \ln (\tan (\theta)+\sec (\theta))\right]\right|_{x=1} ^{x=e}
$$

$$
=\left.\pi\left[x \sqrt{x^{2}+1}+\ln \left(x+\sqrt{x^{2}+1}\right)\right]\right|_{x=1} ^{x=e}
$$

$$
=\pi\left[e \sqrt{e^{2}+1}+\ln \left(e+\sqrt{e^{2}+1}\right)-\sqrt{2}-\ln (1+\sqrt{2})\right]
$$

This doesn't seem to simplify nicely ...
Quiz \#15. Some time or other, 2011. (15 minutes)

1. Find the area of the surface obtained by revolving the curve $y=\sqrt{1-x^{2}}$, where $0 \leq x \leq 1$, about the y-axis. [5]
Solution. In this case

$$
\frac{d y}{d x}=\frac{d}{d x} \sqrt{1-x^{2}}=\frac{1}{2 \sqrt{1-x^{2}}} \cdot \frac{d}{d x}\left(1-x^{2}\right)=\frac{1}{2 \sqrt{1-x^{2}}} \cdot(-2 x)=\frac{-x}{\sqrt{1-x^{2}}} .
$$

We plug this into the surface area formula $\int_{a}^{b} 2 \pi x \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$, giving:

$$
\begin{aligned}
\text { Area } & =\int_{0}^{1} 2 \pi x \sqrt{1+\left(\frac{-x}{\sqrt{1-x^{2}}}\right)^{2}} d x=\int_{0}^{1} 2 \pi x \sqrt{1+\frac{x^{2}}{1-x^{2}}} d x \\
& =\int_{0}^{1} 2 \pi x \sqrt{\frac{1-x^{2}}{1-x^{2}}+\frac{x^{2}}{1-x^{2}}} d x=\int_{0}^{1} 2 \pi x \sqrt{\frac{1-x^{2}+x^{2}}{1-x^{2}}} d x \\
& =\int_{0}^{1} 2 \pi x \sqrt{\frac{1}{1-x^{2}}} d x=\int_{0}^{1} 2 \pi x \frac{1}{\sqrt{1-x^{2}}} d x
\end{aligned}
$$

We will compute the last integral using the substitution $u=1-x^{2}$, so $d u=-2 x d x$ and $(-1) d u=2 x d x$, changing the limits as we go along: $\begin{array}{llll}x & 0 & 1 \\ u & 1 & 0\end{array}$. Then:

$$
\begin{aligned}
\text { Area } & =\int_{0}^{1} 2 \pi x \frac{1}{\sqrt{1-x^{2}}} d x=\int_{1}^{0} \pi \frac{1}{\sqrt{u}}(-1) d u=\pi \int_{0}^{1} u^{1 / 2} d u \\
& =\left.\pi \frac{u^{3 / 2}}{3 / 2}\right|_{0} ^{1}=\left.\pi \frac{2}{3} u^{3 / 2}\right|_{0} ^{1}=\pi \frac{2}{3} 1^{3 / 2}-\pi \frac{2}{3} 0^{3 / 2}=\frac{2}{3} \pi
\end{aligned}
$$

Quiz \#16. Some time or other, 2011. (12 minutes)

1. Sketch the region bounded by $r=\tan (\theta), \theta=0$, and $\theta=\frac{\pi}{4}$ in polar coordinates and find its area. [5]
Solution. Note that when $\theta=0, r=\tan (0)=0$, and when $\theta=\frac{\pi}{4}, r=\tan (\pi / 4)=$ $\frac{\sin (\pi / 4)}{\cos (\pi / 4)}=\frac{1 / \sqrt{2}}{1 / \sqrt{2}}=1$. In between, $\sin (\theta)$ is increasing and $\cos (\theta)$ is decreasing as θ is increasing, so $r=\tan (\theta)=\frac{\sin (\theta)}{\cos (\theta)}$ is increasing. The region therefore looks something like this:

To find its area, we need to plug $r=\tan (\theta)$ into the polar area formula for $0 \leq \theta \leq \frac{\pi}{4}$ and integrate away:

$$
\begin{aligned}
\text { Area } & =\int_{\alpha}^{\beta} \frac{1}{2} r^{2} d \theta=\int_{0}^{\pi / 4} \frac{1}{2} \tan ^{2}(\theta) d \theta=\frac{1}{2} \int_{0}^{\pi / 4}\left(\sec ^{2}(\theta)-1\right) d \theta=\left.\frac{1}{2}(\tan (\theta)-\theta)\right|_{0} ^{\pi / 4} \\
& =\frac{1}{2}\left(\tan \left(\frac{\pi}{4}\right)-\frac{\pi}{4}\right)-\frac{1}{2}(\tan (0)-0)=\frac{1}{2}\left(1-\frac{\pi}{4}\right)-\frac{1}{2} 0=\frac{1}{2}-\frac{\pi}{8}
\end{aligned}
$$

Quiz \#17. Friday, 11 March, 2011. (12 minutes)

1. Find the arc-length of the parametric curve $x=\sec (t), y=\ln (\sec (t)+\tan (t))$, where $0 \leq t \leq \frac{\pi}{4}$.
Solution. We're going to need to know $\frac{d x}{d t}$ and $\frac{d y}{d t}$, so we'll compute them first:

$$
\begin{aligned}
\frac{d x}{d t} & =\frac{d}{d t} \sec (t)=\sec (t) \tan (t) \\
\frac{d y}{d t} & =\frac{d}{d t} \ln (\sec (t)+\tan (t)) \\
& =\frac{1}{\sec (t)+\tan (t)} \cdot \frac{d}{d t}(\sec (t)+\tan (t)) \\
& =\frac{1}{\sec (t)+\tan (t)} \cdot\left(\sec (t) \tan (t)+\sec ^{2}(t)\right) \\
& =\frac{1}{\sec (t)+\tan (t)} \cdot \sec (t)(\tan (t)+\sec (t))=\sec (t)
\end{aligned}
$$

We can now compute the arc-length of the given curve:

$$
\begin{aligned}
\text { arc-length } & =\int_{C} d s=\int_{0}^{\pi / 4} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\
& =\int_{0}^{\pi / 4} \sqrt{(\sec (t) \tan (t))^{2}+(\sec (t))^{2}} d t \\
& =\int_{0}^{\pi / 4} \sqrt{\sec ^{2}(t)\left[\tan ^{2}(t)+1\right]} d t=\int_{0}^{\pi / 4} \sqrt{\sec ^{2}(t) \sec ^{2}(t)} d t \\
& =\int_{0}^{\pi / 4} \sqrt{\left(\sec ^{2}(t)\right)^{2}} d t=\int_{0}^{\pi / 4} \sec ^{2}(t) d t=\left.\tan (t)\right|_{0} ^{\pi / 4} \\
& =\tan \left(\frac{\pi}{4}\right)-\tan (0)=1-0=1
\end{aligned}
$$

Quiz \#18. Friday, 18 March, 2011. (10 minutes)

1. Compute $\lim _{n \rightarrow \infty} \frac{n^{2}}{e^{n}}$. [5]

Solution. Observe that $f(x)=\frac{x^{2}}{e^{x}}$ is defined and differentiable (and hence continuous) on $[0, \infty)$, and such that $f(n)=\frac{n^{2}}{e^{n}}$. It follows that:

$$
\begin{array}{rlr}
\lim _{n \rightarrow \infty} \frac{n^{2}}{e^{n}} & =\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{x}} \quad & \begin{array}{l}
\text { Since } x^{2} \rightarrow \infty \text { and } e^{x} \rightarrow \infty \text { as } x \rightarrow \infty \\
\text { we apply L'Hôpital's Rule. }
\end{array} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{d}{d x} x^{2}}{\frac{d}{d x} e^{x}} & \\
& =\lim _{x \rightarrow \infty} \frac{2 x}{e^{x}} \quad \begin{array}{l}
\text { Since } 2 x \rightarrow \infty \text { and } e^{x} \rightarrow \infty \text { as } x \rightarrow \infty \\
\\
\end{array}=\lim _{x \rightarrow \infty} \frac{\frac{d}{d x} 2 x}{\frac{d}{d x} e^{x}} & \\
& =\lim _{x \rightarrow \infty} \frac{2}{e^{x}} & \\
& =0 \quad \ldots \text { becausely L'Hôpital's } 2 \text { is constant again. } e^{x} \rightarrow \infty \text { as } x \rightarrow \infty
\end{array}
$$

Quiz \#19. Friday, 25 March, 2011. (10 minutes)

1. Determine whether the series $\sum_{n=0}^{\infty} \frac{1}{n^{2}+2^{n}}$ converges or diverges. [5]

Solution. Note that $0<\frac{1}{n^{2}+2^{n}} \leq \frac{1}{2^{n}}=\left(\frac{1}{2}\right)^{n}$ for all $n \geq 0$, and that the series $\sum_{n=0}^{\infty} \frac{1}{2^{n}}$ converges, because it is a geometric series with common ratio $\frac{1}{2}<1$. It follows that $\sum_{n=0}^{\infty} \frac{1}{n^{2}+2^{n}}$ converges by the Comparison Test.
Note: One could also compare the given series to the series $\sum_{n=0}^{\infty} \frac{1}{n^{2}}$, which converges by the p-Test.

Quiz \#20. Friday, 1 April, 2011. (15 minutes)

1. Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n} \ln (n)}{n}$ converges absolutely, converges conditionally, or diverges.
Solution. This series converges conditionally.
First, we check if the given series converges absolutely. The corresponding series of positive terms is $\sum_{n=1}^{\infty}\left|\frac{(-1)^{n} \ln (n)}{n}\right|=\sum_{n=2}^{\infty} \frac{\ln (n)}{n}$. Since $f(x)=\frac{\ln (x)}{x}$ is defined, continuous, and positive for $x \geq 2$, we can use the Integral Test. Since the improper integral

$$
\begin{aligned}
\int_{2}^{\infty} \frac{\ln (x)}{x} d x & =\lim _{t \rightarrow \infty} \int_{2}^{t} \frac{\ln (x)}{x} d x \quad \begin{array}{l}
\text { (Substitute } u=\ln (x), \text { so } d u=\frac{1}{x} d x \\
\text { and change limits accordingly.) }
\end{array} \\
& =\lim _{t \rightarrow \infty} \int_{\ln (2)}^{\ln (t)} u d u=\lim _{t \rightarrow \infty} u^{2} \mid \int_{\ln (2)}^{\ln (t)}=\lim _{t \rightarrow \infty}\left[(\ln (t))^{2}-(\ln (2))^{2}\right] \\
& =\infty \quad(\text { Since } \ln (t) \rightarrow \infty \text { as } t \rightarrow \infty .)
\end{aligned}
$$

does not converge, it follows by the Integral Test that neither does $\sum_{n=2}^{\infty} \frac{\ln (n)}{n}$. (One could also do this part very quickly by comparison with the series $\sum_{n=2}^{\infty} \frac{1}{n}$.) Thus the given series does not converge absolutely.

Second, to check that the given series converges, we will apply the Alternating Series Test.

- The series is indeed alternating: once $n>1, \frac{\ln (n)}{n}$ is always positive, so the $(-1)^{n}$ forces successive terms to switch sign.
- $\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n} \ln (n)}{n}\right|=\lim _{n \rightarrow \infty} \frac{\ln (n)}{n}=\lim _{x \rightarrow \infty} \frac{\ln (x)}{x}=\lim _{x \rightarrow \infty} \frac{1 / x}{1}=0$, as required. (Note the use of l'Hôpital's Rule at the key step.)
- Successive terms decrease in absolute value once $n>1$ since the function $f(x)=\frac{\ln (x)}{x}$ is decreasing for $x>e$ because (Quotient Rule!) $f^{\prime}(x)=\frac{\frac{1}{x} x-\ln (x) 1}{x^{2}}=\frac{1-\ln (x)}{x^{2}}<0$ as soon as $\ln (x)>1$.
It follows that $\sum_{n=1}^{\infty} \frac{(-1)^{n} \ln (n)}{n}$ converges by the Alternating Series Test. Since it does converge, but not absolutely, the series converges conditionally.

