MATH 1101Y Test 2
11 February, 2011
Time: 50 minutes

Instructions

- Show all your work. Legibly, please!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator and an aid sheet.

1. Compute any four (4) of the integrals in parts a-f. [16 $=4 \times 4$ each]
a. $\int \frac{1}{\sqrt{x^{2}+1}} d x$
b. $\int_{0}^{\pi / 4} \sec (x) \tan (x) d x$
c. $\int_{0}^{\infty} e^{-x} d x$
d. $\int \frac{1}{x^{2}+3 x+2} d x$
e. $\int \frac{\cos (x)}{\sin (x)} d x$
f. $\int_{1}^{e} \ln (x) d x$

Solutions. a. We'll use the trig substitution $x=\tan (\theta)$, so $d x=\sec ^{2}(\theta) d \theta$ and $\sqrt{x^{2}+1}=\sqrt{\tan ^{2}(\theta)+1}=\sqrt{\sec ^{2}(\theta)}=\sec (\theta)$.

$$
\begin{aligned}
\int \frac{1}{\sqrt{x^{2}+1}} d x & =\int \frac{1}{\sec (\theta)} \sec ^{2}(\theta) d \theta=\int \sec (\theta) d \theta=\ln (\tan (\theta)+\sec (\theta))+C \\
& =\ln \left(x+\sqrt{x^{2}+1}\right)+C \quad \square
\end{aligned}
$$

b. We'll use the substitution $u=\sec (x)$, so $d u=\sec (x) \tan (x) d x$ and $\begin{array}{ccc}x & 0 & \pi / 4 \\ u & 1 & \sqrt{2}\end{array}$. (Note that $\sec (\pi / 4)=1 / \cos (\pi / 4)=1 /(1 / \sqrt{2})=\sqrt{2}$.

$$
\int_{0}^{\pi / 4} \sec (x) \tan (x) d x=\int_{1}^{\sqrt{2}} 1 d u=\left.u\right|_{1} ^{\sqrt{2}}=\sqrt{2}-1
$$

c. We'll use the substitution $w=-x$, so $d w=(-1) d x$ and $d x=(-1) d w$, and $\begin{array}{ccc}x & 0 & t \\ w & 0 & -t\end{array}$. Note that this is an improper integral, so we'll have to take a limit first.

$$
\begin{aligned}
\int_{0}^{\infty} e^{-x} d x & =\lim _{t \rightarrow \infty} \int_{0}^{t} e^{-x} d x=\lim _{t \rightarrow \infty} \int_{0}^{-t} e^{w}(-1) d w=\left.\lim _{t \rightarrow \infty}(-1) e^{w}\right|_{0} ^{-t} \\
& =\lim _{t \rightarrow \infty}\left[(-1) e^{-t}-(-1) e^{0}\right]=\lim _{t \rightarrow \infty}\left[-e^{-t}+1\right]=\lim _{t \rightarrow \infty}\left[1-\frac{1}{e^{t}}\right]=1-0=1
\end{aligned}
$$

Note that $\frac{1}{e^{t}} \rightarrow 0$ as $t \rightarrow \infty$ since $e^{t} \rightarrow \infty$ as $t \rightarrow \infty$.
d. This is a job for partial fractions. Note first that $x^{2}+3 x+2=(x+1)(x+2)$. (This can be done by eyeballing, experimenting a bit, or using the quadratic formula to find the roots of $x^{2}+3 x+2$. Calculators that can do some symbolic computation should be able to factor the quadratic too.) We must therefore have a partial fraction decomposition of the form

$$
\frac{1}{x^{2}+3 x+2}=\frac{1}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}
$$

for some constants A and B. It follows that

$$
\frac{1}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}=\frac{A(x+2)+B(x+1)}{(x+1)(x+2)}=\frac{(A+B) x+(2 A+B)}{(x+1)(x+2)},
$$

so $A+B=0$ and $2 A+B=1$. Then $A=(2 A+B)-(A+B)=1-0=1$ and $B=0-A=-1$.

We can now integrate at last; we'll use the substitutions $u=x+1$ and $w=x+2$, so $d u=d x$ and $d w=d x$.

$$
\begin{aligned}
\int \frac{1}{x^{2}+3 x+2} d x & =\int\left(\frac{1}{x+1}+\frac{-1}{x+2}\right) d x=\int \frac{1}{x+1} d x-\int \frac{1}{x+2} d x \\
& =\int \frac{1}{u} d u-\int \frac{1}{w} d w=\ln (u)-\ln (w)+C \\
& =\ln (x+1)-\ln (x+2)+C
\end{aligned}
$$

e. We'll use the substitution $u=\sin (x)$, so $d u=\cos (x) d x$.

$$
\int \frac{\cos (x)}{\sin (x)} d x=\int \frac{1}{u} d u=\ln (u)+C=\ln (\sin (x))+C
$$

f. We'll use integration by parts, with $u=\ln (x)$ and $v^{\prime}=1$, so $u^{\prime}=\frac{1}{x}$ and $v=x$.

$$
\begin{aligned}
\int_{1}^{e} \ln (x) d x & =\int_{1}^{e} u v^{\prime} d x=\left.u v\right|_{1} ^{e}-\int_{1}^{e} u^{\prime} v d x=\left.x \ln (x)\right|_{1} ^{e}-\int_{1}^{e} \frac{1}{x} x d x \\
& =(e \ln (e)-1 \ln (1))-\int_{1}^{e} 1 d x=(e \cdot 1-1 \cdot 0)-\left.x\right|_{1} ^{e}=e-(e-1)=1
\end{aligned}
$$

2. Do any two (2) of parts a-e. [12 $=2 \times 6$ each]
a. Compute $\int_{1}^{2} \frac{x^{3}-x^{2}-x+1}{x+1} d x$
b. Find the area between $y=\cos (x)$ and $y=\sin (x)$ for $0 \leq x \leq \frac{\pi}{2}$.
c. Which of $\int_{\pi}^{41} \arctan (\sqrt{x}) d x$ and $\int_{\pi}^{41} \arctan \left(x^{2}\right) d x$ is larger? Explain why.
d. Use the Right-hand Rule to compute $\int_{1}^{2} x d x$.
e. Find the area of the region bounded by $y=0$ and $y=\ln (x)$ for $0<x \leq 1$.

Solutions. a. This is a rational function whose numerator has degree greater than its denominator. Observe that

$$
\begin{aligned}
\frac{x^{3}-x^{2}-x+1}{x+1} & =\frac{\left(x^{3}-x\right)+\left(-x^{2}+1\right)}{x+1}=\frac{x\left(x^{2}-1\right)-1\left(x^{2}-1\right)}{x+1} \\
& =\frac{(x-1)\left(x^{2}-1\right)}{x+1}=\frac{(x-1)(x-1)(x+1)}{x+1}=(x-1)^{2}
\end{aligned}
$$

which we could also get by dividing $x+1$ into $x^{3}-x^{2}-x+1$ if we didn't spot the cheap bit of algebra above.

We can now integrate; we'll use the substitution $w=x-1$, so $d w=d x$, and we'll change limits accordingly: $\begin{array}{ccc}x & 1 & 2 \\ w & 0 & 1\end{array}$. Thus:

$$
\int_{1}^{2} \frac{x^{3}-x^{2}-x+1}{x+1} d x=\int_{1}^{2}(x-1)^{2} d x=\int_{0}^{1} w^{2} d w=\left.\frac{w^{3}}{3}\right|_{0} ^{1}=\frac{1}{3}-\frac{0}{3}=\frac{1}{3}
$$

b. Recall what the graphs of $\cos (x)$ and $\sin (x)$ look like:


```
plot( [cos(x), sin(x)], x=0..(1/2)*Pi );
```

$\cos (0)=1$ and $\sin (0)=0$, but $\cos \left(\frac{\pi}{2}\right)=0$ and $\sin \left(\frac{\pi}{2}\right)=1$; the graphs of the two functions cross each other at $x=\frac{\pi}{4}$, where both are equal to $1 / \sqrt{2}$. The area between the curves is therefore:

$$
\begin{aligned}
\text { Area }= & \int_{0}^{\pi / 4}(\cos (x)-\sin (x)) d x+\int_{\pi / 4}^{\pi / 2}(\sin (x)-\cos (x)) d x \\
= & \left.(\sin (x)-(-\cos (x)))\right|_{0} ^{\pi / 4}+\left.(-\cos (x)-\sin (x))\right|_{\pi / 4} ^{\pi / 2} \\
= & \left(\sin \left(\frac{\pi}{4}\right)+\cos \left(\frac{\pi}{4}\right)\right)-(\sin (0)+\cos (0)) \\
& \quad+\left(-\cos \left(\frac{\pi}{2}\right)-\sin \left(\frac{\pi}{2}\right)\right)-\left(-\cos \left(\frac{\pi}{4}\right)-\sin \left(\frac{\pi}{4}\right)\right) \\
= & \left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right)-(0+1)+(-0-1)-\left(-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right) \\
= & \frac{4}{\sqrt{2}}-2=2 \sqrt{2}-2=2(\sqrt{2}-1) \quad
\end{aligned}
$$

c. Note that the two definite integrals are the same except for the function of x being composed with \arctan. As $\arctan (t)$ is an increasing function - its derivative, $\frac{1}{1+t^{2}}$, is positive for all t - and $\sqrt{x}<x^{2}$ for all $x>1$, we must have $\arctan (\sqrt{x})<\arctan \left(x^{2}\right)$ for all x in $[\pi, 41]$. It follows that $\int_{\pi}^{41} \arctan (\sqrt{x}) d x<\int_{\pi}^{41} \arctan \left(x^{2}\right) d x$.
d. We throw the Right-hand Rule formula, $\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{b-a}{n} \cdot f\left(a+i \frac{b-a}{n}\right)$, at the given definite integral and compute away. Note that $f(x)=x$ in this case.

$$
\begin{aligned}
\int_{1}^{2} x d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2-1}{n} \cdot\left(1+i \frac{2-1}{n}\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{n} \cdot\left(1+\frac{i}{n}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left(1+\frac{i}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}\left(\left[\sum_{i=1}^{n} 1\right]+\left[\sum_{i=1}^{n} \frac{i}{n}\right]\right)=\lim _{n \rightarrow \infty} \frac{1}{n}\left(n+\left[\frac{1}{n} \sum_{i=1}^{n} i\right]\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}\left(n+\frac{1}{n} \cdot \frac{n(n+1)}{2}\right)=\lim _{n \rightarrow \infty} \frac{1}{n}\left(n+\frac{n+1}{2}\right)=\lim _{n \rightarrow \infty} \frac{1}{n}\left(\frac{3}{2} n+\frac{1}{2}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{3}{2}+\frac{1}{2 n}\right)=\frac{3}{2}+0 \quad \text { since } \frac{1}{2 n} \rightarrow 0 \text { as } n \rightarrow \infty . \square
\end{aligned}
$$

e. Since $\ln (x)<0$ for $0<x<1$, the area of the given region is just $\int_{0}^{1}(0-\ln (x)) d x=$ $-\int_{0}^{1} \ln (x) d x$. However, since $\ln (x)$ has an asymptote at $x=0$, this is an improper integral, forcing us to do some additional work. To find the antiderivative of $\ln (x)$ itself, we will use integration by parts, with $u=\ln (x)$ and $v^{\prime}=1$, so $u^{\prime}=\frac{1}{x}$ and $v=x$.

$$
\begin{aligned}
\text { Area } & =-\int_{0}^{1} \ln (x) d x=\lim _{t \rightarrow 0^{+}}\left(-\int_{t}^{1} \ln (x) d x\right)=-\lim _{t \rightarrow 0^{+}} \int_{t}^{1} \ln (x) d x \\
& =-\lim _{t \rightarrow 0^{+}}\left[\left.x \ln (x)\right|_{t} ^{1}-\int_{t}^{1} \frac{1}{x} x d x\right]=-\lim _{t \rightarrow 0^{+}}\left[1 \ln (1)-t \ln (t)-\int_{t}^{1} 1 d x\right] \\
& =-\lim _{t \rightarrow 0^{+}}\left[1 \cdot 0-t \ln (t)-\left.x\right|_{t} ^{1}\right]=-\lim _{t \rightarrow 0^{+}}[-t \ln (t)-(1-t)] \\
& =\lim _{t \rightarrow 0^{+}}[t \ln (t)+(1-t)]=\lim _{t \rightarrow 0^{+}} \frac{\ln (t)}{1 / t}+\lim _{t \rightarrow 0^{+}}(1-t)
\end{aligned}
$$

$$
\text { Use l'Hôpital's Rule since } \ln (t) \rightarrow-\infty \text { and } \frac{1}{t} \rightarrow \infty \text { as } t \rightarrow 0^{+} \text {: }
$$

$$
=\left(\lim _{t \rightarrow 0^{+}} \frac{1 / t}{-1 / t^{2}}\right)+(1-0)=\left(\lim _{t \rightarrow 0^{+}}-t\right)+1=-0+1=1
$$

3. Do one (1) of parts a or b. [12]
a. Sketch the solid obtained by rotating the region bounded above by $y=x^{2}$ and below by $y=0$, where $0 \leq x \leq 2$, about the y-axis, and find its volume.
b. Sketch the solid obtained by rotating the region bounded above by $y=x^{2}$ and below by $y=0$, where $0 \leq x \leq 2$, about the x-axis, and find its volume.

Solutions. Note that the region being rotated is the same in both a and \mathbf{b}; they differ in the axis about which the region is rotated.

plot($x^{\wedge} 2, x=0 . .1$, color="Red", filled=[color="Red", transparency=.5])

Solution to a. Here is a crude sketch of the solid with a generic cylindrical shell.

The solid with a cylindrical shell.

We will find the volume of the solid using cylindrical shells. Note that since we rotated the region about the y-axis, we will have to integrate with respect to x if we're using shells. Looking at the diagram, it is easy to see that the radius of the cylindrical shell that comes from rotating the vertical cross-section at x of the original region is just going to be $r=x-0=x$. It is also easy to see that its height, which is the length of the vertical cross-section at x of the original region, is going to be $h=x^{2}-0=x^{2}$. The limits of integration will come from the possible x values in the original region, i.e. $0 \leq x \leq 2$.

Thus the volume of the solid is:

$$
\begin{aligned}
\text { Volume } & =\int_{0}^{2} 2 \pi r h d x=\int_{0}^{2} 2 \pi x x^{2} d x=2 \pi \int_{0}^{2} x^{3} d x \\
& =\left.2 \pi \frac{x^{4}}{4}\right|_{0} ^{2}=2 \pi\left(\frac{2^{4}}{4}-\frac{0^{4}}{4}\right)=2 \pi\left(\frac{16}{4}-0\right)=8 \pi
\end{aligned}
$$

Solution to b. Here is a crude sketch of the solid with a generic disk.

The solid with a disk.
Rotate picture 90° clockwise!
We will find the volume of the solid using disks. Note that since we rotated the region about the x-axis, we will have to integrate with respect to x if we're using disks. Looking at the diagram, it is easy to see that the radius of the disk that comes from rotating the vertical cross-section at x of the original region is just going to be the length of that vertical cross-section, namely $r=x^{2}-0=x^{2}$. Note that the disk has no hole because the x-axis forms part of the boundary of the give region, so we needn't worry about the inner radius: it is always 0 . The limits of integration will come from the possible x values in the original region, i.e. $0 \leq x \leq 2$.

Thus the volume of the solid is:

$$
\begin{aligned}
\text { Volume } & =\int_{0}^{2} \pi r^{2} d x=\pi \int_{0}^{2}\left(x^{2}\right)^{2} d x=\pi \int_{0}^{2} x^{4} d x \\
& =\left.\pi \frac{x^{5}}{5}\right|_{0} ^{2}=\pi\left(\frac{2^{5}}{5}-\frac{0^{5}}{5}\right)=\frac{32}{5} \pi \quad \square
\end{aligned}
$$

$$
[\text { Total }=40]
$$

