Mathematics 1101Y – Calculus I: functions and calculus of one variable TRENT UNIVERSITY, 2010–2011

Test # 2

11 February, 2011 Time: 50 minutes

Instructions

- Show all your work. Legibly, please!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator and an aid sheet.
- **1.** Compute any four (4) of the integrals in parts **a-f**. $[16 = 4 \times 4 \text{ each}]$

a.
$$\int \frac{1}{\sqrt{x^2 + 1}} dx$$

b. $\int_0^{\pi/4} \sec(x) \tan(x) dx$
c. $\int_0^{\infty} e^{-x} dx$
d. $\int \frac{1}{x^2 + 3x + 2} dx$
e. $\int \frac{\cos(x)}{\sin(x)} dx$
f. $\int_1^e \ln(x) dx$

- **2.** Do any two (2) of parts **a-e**. $[12 = 2 \times 6 \text{ each}]$
 - **a.** Compute $\int_{1}^{2} \frac{x^3 x^2 x + 1}{x + 1} dx$
 - **b.** Find the area between $y = \cos(x)$ and $y = \sin(x)$ for $0 \le x \le \frac{\pi}{2}$.
 - c. Which of $\int_{\pi}^{41} \arctan(\sqrt{x}) dx$ and $\int_{\pi}^{41} \arctan(x^2) dx$ is larger? Explain why.

d. Use the Right-hand Rule to compute $\int_{1}^{2} x \, dx$.

- **e.** Find the area of the region bounded by y = 0 and $y = \ln(x)$ for $0 < x \le 1$.
- **3.** Do one (1) of parts **a** or **b**. [12]
 - **a.** Sketch the solid obtained by rotating the region bounded by $y = x^2$ and y = 0, where $0 \le x \le 2$, about the *y*-axis, and find its volume.
 - **b.** Sketch the solid obtained by rotating the region bounded by $y = x^2$ and y = 0, where $0 \le x \le 2$, about the x-axis, and find its volume.

$$[Total = 40]$$