Trent University
 MATH 1101Y Test 1

19 November, 2010
Time: 50 minutes
Name: \quad Steffi Graph
Student Number: $\quad 01234567$

Question Mark

1	-
2	-
3	-
4	-

Total

Instructions

- Show all your work. Legibly, please!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator and an aid sheet.

1. Find $\frac{d y}{d x}$ in any three (3) of a-e. [12 $\left.=3 \times 4 \mathrm{each}\right]$
a. $y=x^{x}$
b. $y=\frac{1}{1+x^{2}}$
c. $y=\cos (\sqrt{x})$
d. $y^{2}+x=1$
e. $y=x^{2} e^{-x}$

Solutions. a. $y=x^{x}=\left(e^{\ln (x)}\right)^{x}=e^{x \ln (x)}$ so, using the Chain and Product Rules:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x} x^{x}=\frac{d}{d x} e^{x \ln (x)}=e^{x \ln (x)} \cdot \frac{d}{d x}(x \ln (x))=e^{x \ln (x)} \cdot\left[\left(\frac{d}{d x} x\right) \cdot \ln (x)+x \cdot \frac{d}{d x} \ln (x)\right] \\
& =e^{x \ln (x)} \cdot\left[1 \cdot \ln (x)+x \cdot \frac{1}{x}\right]=x^{x} \cdot(\ln (x)+1)
\end{aligned}
$$

This can also be done using logarithmic differentiation.
b. Using the Quotient Rule:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(\frac{1}{1+x^{2}}\right)=\frac{\left(\frac{d}{d x} 1\right) \cdot\left(1+x^{2}\right)-1 \cdot \frac{d}{d x}\left(1+x^{2}\right)}{\left(1+x^{2}\right)^{2}} \\
& =\frac{0 \cdot\left(1+x^{2}\right)-1 \cdot(2 x)}{\left(1+x^{2}\right)^{2}}=\frac{-2 x}{\left(1+x^{2}\right)^{2}}
\end{aligned}
$$

c. Using the Chain Rule:

$$
\frac{d y}{d x}=\frac{d}{d x} \cos (\sqrt{x})=-\sin (\sqrt{x}) \cdot \frac{d}{d x} \sqrt{x}=-\sin (\sqrt{x}) \cdot \frac{1}{2 \sqrt{x}}=\frac{-\sin (\sqrt{x})}{2 \sqrt{x}}
$$

Recall that $\sqrt{x}=x^{1 / 2}$, so, using the Power Rule, $\frac{d}{d x} \sqrt{x}=\frac{d}{d x} x^{1 / 2}=\frac{1}{2} x^{-1 / 2}-\frac{1}{2 \sqrt{x}}$.
d. Using implicit differentiation and the Chain Rule:

$$
y^{2}+x=1 \quad \Rightarrow \quad \frac{d}{d x}\left(y^{2}+x\right)=\frac{d}{d x} 1 \quad \Rightarrow \quad 2 y \frac{d y}{d x}+1=0 \quad \Rightarrow \quad \frac{d y}{d x}=-\frac{1}{2 y}
$$

One could also solve for y in terms of x in the original equation and then differentiate.
e. Using the Product and Chain Rules:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(x^{2} e^{-x}\right)=\left(\frac{d}{d x} x^{2}\right) \cdot e^{-x}+x^{2} \cdot\left(\frac{d}{d x} e^{-x}\right)=2 x e^{-x}+x^{2} e^{-x} \cdot\left(\frac{d}{d x}(-x)\right) \\
& =2 x e^{-x}+x^{2} e^{-x} \cdot(-1)=\left(2 x-x^{2}\right) e^{-x}=x(2-x) e^{-x}
\end{aligned}
$$

2. Do any two (2) of a-d. [10 $=2 \times 5$ each]
a. Use the limit definition of the derivative to compute $f^{\prime}(0)$ for $f(x)=x^{2}-3 x+\pi$.
b. Suppose $f(x)=\frac{x}{\sin (x)}$ for $x \neq 0$. What would $f(0)$ have to be to make $f(x)$ continuous at $a=0$?
c. Find the equation of the tangent line to $y=x^{2}$ at the point $(2,4)$.
d. Use the $\varepsilon-\delta$ definition of limits to verify that $\lim _{x \rightarrow 1}(2 x+3)=5$.

Solutions. a. Plug into the definition and chug away:

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{\left(h^{2}-3 h+\pi\right)-\left(0^{2}-3 \cdot 0+\pi\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{h^{2}-3 h+\pi-\pi}{h}=\lim _{h \rightarrow 0} \frac{h^{2}-3 h+0}{h}=\lim _{h \rightarrow 0}(h-3)=0-3=-3 \quad \square
\end{aligned}
$$

b. To make $f(x)$ continuous at $a=0$, we need to make $f(0)=\lim _{x \rightarrow 0} f(x)$, so we have to compute the limit:

$$
\begin{aligned}
\lim _{x \rightarrow 0} f(x) & =\lim _{x \rightarrow 0} \frac{x}{\sin (x)} \quad \text { This we compute using l'Hôpital's Rule, since } \\
& =\lim _{x \rightarrow 0} \frac{\frac{d}{d x} x}{\frac{d}{d x} \sin (x)}=\lim _{x \rightarrow 0} \frac{1}{\cos (x)}=\frac{1}{1}=1 \quad \text { Since } \cos (x) \rightarrow 1 \text { as } x \rightarrow 0 .
\end{aligned}
$$

Thus we need to make $f(0)=1$ to have $f(x)$ be continuous at $a=1$.
c. The slope of the tangent line to $y=x^{2}$ at $(2,4)$ is given by $\frac{d y}{d x}=\frac{d}{d x} x^{2}=2 x$ evaluated at $x=2: m=\left.\frac{d y}{d x}\right|_{x=2}=\left.2 x\right|_{x=2}=2 \cdot 2=4$. The equation of the line is therefore $y=4 x+b$ for some b. To find b, plug the coordinates of the point $(2,4)$ in for x and y in the equation of the line and solve for $b: 4=4 \cdot 2+b$, so $b=4-8=-4$.

Thus the equation of the tangent line to $y=x^{2}$ at $(2,4)$ is $y=4 x-4$.
d. To verify that $\lim _{x \rightarrow 1}(2 x+3)=5$, we need to show that for any $\varepsilon>0$ there is a $\delta>0$ such that if $0<|x-1|<\delta$, then $|(2 x+3)-5|<\varepsilon$. As usual, we reverse-engineer the required δ from what we need to achieve:

$$
|(2 x+3)-5|<\varepsilon \quad \Leftrightarrow \quad|2 x-2|<\varepsilon \quad \Leftrightarrow \quad 2|x-1|<\varepsilon \quad \Leftrightarrow \quad|x-1|<\frac{\varepsilon}{2}
$$

It follows that $\delta=\frac{\varepsilon}{2}$ does the job: if $|x-1|<\delta=\frac{\varepsilon}{2}$, we can traverse the chain of equivalences above backwards to obtain $|(2 x+3)-5|<\varepsilon$, as required.

Thus $\lim _{x \rightarrow 1}(2 x+3)=5$.
3. Birds Alpha and Beta leave their nest at the same time, with Alpha flying due north at $5 \mathrm{~km} / \mathrm{h}$ and Beta flying due east at $10 \mathrm{~km} / \mathrm{h}$. How is the area of the triangle formed by their respective positions and the nest changing $1 h$ after their departure? [8]

Solution. Note that after $1 h$, Alpha and Beta will have flown 5 km and 10 km , respectively.

Let $a(t)$ and $b(t)$ be the distances that birds Alpha and Beta, respectively, are from the nest at time t. Then most of the given information can be summarized as follows: $a(0)=b(0)=0, a(1)=5, b(1)=10, a^{\prime}(t)=5$, and $b^{\prime}(t)=10$. Since the birds fly north and east, respectively, their positions and the position of the nest form a right triangle with base $b(t)$ and height $a(t)$ at each instant; the area of this triangle is therefore $A(t)=\frac{1}{2} a(t) b(t)$. We want to know what $A^{\prime}(t)$ is at $t=1$.

Using the Product Rule:

$$
A^{\prime}(t)=\frac{d}{d t}\left[\frac{1}{2} a(t) b(t)\right]=\frac{1}{2}\left[a^{\prime}(t) b(t)+a(t) b^{\prime}(t)\right]
$$

Hence

$$
\begin{aligned}
A^{\prime}(1) & =\frac{1}{2}\left[a^{\prime}(1) b(1)+a(1) b^{\prime}(1)\right] \\
& =\frac{1}{2}[5 \mathrm{~km} / \mathrm{h} \cdot 10 \mathrm{~km}+5 \mathrm{~km} \cdot 10 \mathrm{~km} / \mathrm{h}] \\
& =\frac{1}{2} 100 \mathrm{~km}^{2} / \mathrm{h}=50 \mathrm{~km}^{2} / \mathrm{h},
\end{aligned}
$$

i.e. the area of the triangle formed by the birds' respective positions and the nest is increasing at a rate of $50 \mathrm{~km}^{2} / \mathrm{h}$ one hour after their departure from the nest.
4. Find the domain and all intercepts, maxima and minima, and vertical and horizontal asymptotes of $f(x)=\frac{x^{2}+2}{x^{2}+1}$ and sketch its graph based on this information. [10]
Solution. We run through the checklist:
Domain. $f(x)=\frac{x^{2}+2}{x^{2}+1}$ makes sense for all possible $x-$ note that since $x^{2} \geq 0$, the denominator is always $\geq 1>0$ - so the domain of $f(x)$ is $(-\infty, \infty)$.
Intercepts. $f(0)=\frac{0^{2}+2}{0^{2}+1}=\frac{2}{1}=2$, so the y-intercept is $(0,2)$. Since $x^{2}+2 \geq 2$ for all $x-$ since, again, $x^{2} \geq 0-f(x)$ is never 0 , so $f(x)$ has no x-intercepts.
Maxima and minima. There are no endpoints to worry about, so all we need to do is check what happens around critical points. Using the Quotient Rule,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\frac{d}{d x}\left(x^{2}+2\right) \cdot\left(x^{2}+1\right)-\left(x^{2}+2\right) \cdot \frac{d}{d x}\left(x^{2}+1\right)}{\left(x^{2}+1\right)^{2}} \\
& =\frac{2 x \cdot\left(x^{2}+1\right)-\left(x^{2}+2\right) \cdot 2 x}{\left(x^{2}+1\right)^{2}}=\frac{-2 x}{\left(x^{2}+1\right)^{2}},
\end{aligned}
$$

which $=0$ when $x=0,>0$ when $x<0$, and <0 when $x>0$. Note that there are no points where $f^{\prime}(x)$ is undefined, since $\left(x^{2}+1\right)^{2} \geq 1>0$ for all x. We build the usual table:

$$
\begin{array}{cccc}
x & (-\infty, 0) & 0 & (0, \infty) \\
f^{\prime}(x) & + & 0 & - \\
f(x) & \uparrow & \max & \downarrow
\end{array}
$$

Since $f(x)$ is increasing to the left of 0 and decreasing to the right of 0 , the critical point 0 (also the y-intercept!) is a maximum. Note that there are no minimum points.
Vertical asymptotes. Since $f(x)$ is defined for all x and continuous (being a rational function) wherever it is defined, $f(x)$ has no vertical asymptotes.
Horizontal asymptotes. We need to check what $f(x)$ does as $x \rightarrow \pm \infty$:

$$
\begin{aligned}
& \lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \frac{x^{2}+2}{x^{2}+1}=\lim _{x \rightarrow+\infty} \frac{x^{2}+2}{x^{2}+1} \cdot \frac{1 / x^{2}}{1 / x^{2}}=\lim _{x \rightarrow+\infty} \frac{1+2 / x^{2}}{1+1 / x^{2}}=\frac{1+0}{1+0}=1 \\
& \lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{x^{2}+2}{x^{2}+1}=\lim _{x \rightarrow-\infty} \frac{x^{2}+2}{x^{2}+1} \cdot \frac{1 / x^{2}}{1 / x^{2}}=\lim _{x \rightarrow-\infty} \frac{1+2 / x^{2}}{1+1 / x^{2}}=\frac{1+0}{1+0}=1
\end{aligned}
$$

It follows that $f(x)$ has $y=1$ as its horizontal asymptote in both directions.
The graph. plot $\left(\left(x^{\wedge} 2+2\right) /\left(x^{\wedge} 2+1\right), \mathrm{x}=-5 . .5, \mathrm{y}=0 . .2 .5\right)$; in Maple gives:

That's that!

