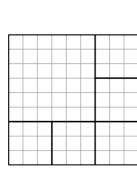
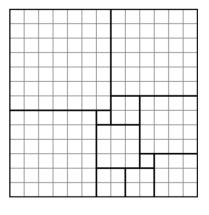
Mathematics 1101Y – Calculus I: functions and calculus of one variable TRENT UNIVERSITY, 2010–2011


Solutions to Assignment #5 \square


The general problem is to divide an $n \times n$ for some integer length n into the least possible number of squares with sides of length strictly less than n. For example, any square with sides of even length, say $2k \times 2k$, can be divided into four $k \times k$ squares. Note that, in general, the smaller squares do not all have to be the same size. Optimal divisions for 4×4 and 5×5 squares are given in the diagram below.

		 -	-		
				_	

- 1. Divide a 9×9 square into as few squares which each have sides of integer length strictly less than 9 as you can. Provide a picture! [5]
- 2. Divide a 13×13 square into as few squares which each have sides of integer length strictly less than 9 as you can. Provide a picture! [5]

SOLUTIONS. A 9×9 square can be divided into six smaller squares and a 13×13 square can be divided into eleven smaller squares, as the following diagram demonstrates:

