Mathematics 1101Y - Calculus I: functions and calculus of one variable

 Trent University, 2010-2011Solutions to Assignment \#2
Plotting in Maple and some parametric curves

Please see Assignment \#2 for the description of Lissajous curves.

1. Use Maple to plot the curves $y=1-x^{2},-1 \leq x \leq 1$, and $x=1-y^{2},-1 \leq y \leq 1$. Please submit a printout of your worksheet(s) as your solution. [2]

Solution. For the first, the Maple command

$$
>\operatorname{plot}\left(1-x^{\wedge} 2, x=-1 . .1\right) ;
$$

gives:

For the second, the easiest way to get Maple to graph x as a function of y is to express it parametrically: $x=1-t^{2}, y=t,-1 \leq t \leq 1$. The Maple command

```
> plot([1-t^2,t,t=-1..1]);
```

gives:

2. Use Maple to plot the Lissajous curves for the following combinations of a and b,

$$
\begin{array}{ccccc}
a & 1 & 2 & 3 & 4 \\
b & 1 & 1 & 2 & 2
\end{array} .
$$

Please submit a printout of your worksheet(s) as your solution. [4]
Solution. For $a=1, b=1$, the Maple command

$$
>\operatorname{plot}([\cos (\mathrm{t}), \sin (\mathrm{t}), \mathrm{t}=0 . .2 * \operatorname{Pi}]) ;
$$

gives:

For $a=2, b=1$, the Maple command

$$
>\operatorname{plot}([\cos (2 * t), \sin (t), t=0 \ldots 2 * \operatorname{Pi}]) ;
$$

gives:

For $a=3, b=2$, the Maple command

$$
>\operatorname{plot}([\cos (3 * t), \sin (2 * t), t=0 . .2 * \operatorname{Pi}]) ;
$$

gives:

This is the kind of picture people usually have in mind when thinking of Lissajous curves.
Finally, for $a=4, b=2$, the Maple command

$$
>\operatorname{plot}([\cos (4 * t), \sin (2 * t), t=0 \ldots 2 * \operatorname{Pi}]) ;
$$

gives:

3. Which combinations of a and b appear to give the same graphs as one of those you obtained in 1? [2]

Solution. Interpreting "the same" to mean "exactly the same," none of them.
Interpreting "the same" to mean "the same type of," then the Lissajous curves for $a=2, b=1$, and $a=4, b=2$, respectively, are pieces of of a parabola similar to $x=1-y^{2}$. (In particular, they have the same tip and orientation.)

Either interpretation would have gotten you full credit, assuming the graphs you got in $\mathbf{1}$ and $\mathbf{2}$ actually supported what you said.
4. Explain why these combinations do give the same graph as one you obtained in 1. [2]

Solution. Nothing need be said here if you answered "none of them" in 3... [Really free marks, if you think about it!]

Otherwise, here is why the Lissajous curve for $a=2, b=1$, gives (a piece of) a parabola similar to $x=1-y^{2}$. If $x=\cos (2 t)$ and $y=\sin (t)$, then, using one form of the double-angle formula for cos, we have:

$$
x=\cos (2 t)=1-2 \sin ^{2}(t)=1-2 y^{2}
$$

Note that $x=1-2 y^{2}$ is a parabola with its tip at $(1,0)$ and opening leftwards, just like the parabola $x=1-y^{2}$ from 1 .

The Lissajous curve for $a=4, b=2$, is (the same) part of the same parabola as the Lissajous curve for $a=2, b=1$. If $x=\cos (4 t)$ and $y=\sin (2 t)$, then, using the same double-angle formula for cos, we have:

$$
x=\cos (4 t)=1-2 \sin ^{2}(2 t)=1-2 y^{2}
$$

Note that $4 t=2 \cdot 2 t$.

Just for fun, for $a=11, b=8$, the Maple command

$$
>\operatorname{plot}([\cos (11 * t), \sin (8 * t), t=0 \ldots 2 * \operatorname{Pi}]) ;
$$

gives:

I love these pictures!

