Mathematics 1101Y – Calculus I: functions and calculus of one variable TRENT UNIVERSITY, 2010–2011

Solutions to Assignment #2Plotting in Maple and some parametric curves

Please see Assignment #2 for the description of Lissajous curves.

1. Use Maple to plot the curves $y = 1 - x^2$, $-1 \le x \le 1$, and $x = 1 - y^2$, $-1 \le y \le 1$. Please submit a printout of your worksheet(s) as your solution. [2]

SOLUTION. For the first, the Maple command

> plot(1-x^2,x=-1..1);

gives:

For the second, the easiest way to get Maple to graph x as a function of y is to express it parametrically: $x = 1 - t^2$, y = t, $-1 \le t \le 1$. The Maple command

gives:

2. Use Maple to plot the Lissajous curves for the following combinations of a and b,

Please submit a printout of your worksheet(s) as your solution. [4] SOLUTION. For a = 1, b = 1, the Maple command

> plot([cos(t),sin(t),t=0..2*Pi]);

gives:

For a = 2, b = 1, the Maple command

> plot([cos(2*t),sin(t),t=0..2*Pi]);

gives:

For a = 3, b = 2, the Maple command

gives:

This is the kind of picture people usually have in mind when thinking of Lissajous curves. Finally, for a = 4, b = 2, the Maple command

> plot([cos(4*t),sin(2*t),t=0..2*Pi]);

gives:

3. Which combinations of a and b appear to give the same graphs as one of those you obtained in **1**? [2]

SOLUTION. Interpreting "the same" to mean "exactly the same," none of them.

Interpreting "the same" to mean "the same type of," then the Lissajous curves for a = 2, b = 1, and a = 4, b = 2, respectively, are pieces of a parabola similar to $x = 1-y^2$. (In particular, they have the same tip and orientation.)

Either interpretation would have gotten you full credit, assuming the graphs you got in 1 and 2 actually supported what you said.

4. Explain why these combinations do give the same graph as one you obtained in 1. [2]

SOLUTION. Nothing need be said here if you answered "none of them" in $3 \dots$ [Really free marks, if you think about it!]

Otherwise, here is why the Lissajous curve for a = 2, b = 1, gives (a piece of) a parabola similar to $x = 1 - y^2$. If $x = \cos(2t)$ and $y = \sin(t)$, then, using one form of the double-angle formula for \cos , we have:

$$x = \cos(2t) = 1 - 2\sin^2(t) = 1 - 2y^2$$

Note that $x = 1 - 2y^2$ is a parabola with its tip at (1,0) and opening leftwards, just like the parabola $x = 1 - y^2$ from **1**.

The Lissajous curve for a = 4, b = 2, is (the same) part of the same parabola as the Lissajous curve for a = 2, b = 1. If $x = \cos(4t)$ and $y = \sin(2t)$, then, using the same double-angle formula for \cos , we have:

$$x = \cos(4t) = 1 - 2\sin^2(2t) = 1 - 2y^2$$

Note that $4t = 2 \cdot 2t$.

Just for fun, for a = 11, b = 8, the Maple command > plot([cos(11*t), sin(8*t), t=0..2*Pi]);

gives:

I love these pictures!