
Mathematics 1101Y – Calculus I: functions and calculus of one variable
Trent University, 2010–2011

Solutions to the Final Examination

Part X. Do all three (3) of 1–3.

1. Compute
dy

dx
as best you can in any three (3) of a–f. [15 = 3 × 5 each]

a. y = cos (ex) b. y =

∫ x

1

etln(t) dt c. y = xln(x)

d. y =
ln(x)

x
e. arctan(x+ y) = 0 f.

x = et

y = e2t

Solutions to 1.

a. Using the Chain Rule:
dy

dx
= − sin (ex) · d

dx
ex = −ex sin (ex) �

b. Using the Fundamental Theorem of Calculus:
dy

dx
= exln(x) �

c. Using the Product Rule:
dy

dx
=
dx

dx
· ln(x) +x · d

dx
ln(x) = ln(x) +x · 1

x
= ln(x) + 1 �

d. Using the Quotient Rule:

dy

dx
=

(
d
dx ln(x)

)
· x− ln(x) · dxdx
x2

=
1
x · x− ln(x) · 1

x2
=

1− ln(x)

x2
�

e. arctan(x+ y) = 0⇔ x+ y = 0⇔ y = −x⇒ dy

dx
= −1 �

Note: This can also be done using implicit differentiation.

f.
dy

dx
=

dy
dt
dx
dt

=
d
dte

2t

d
dte

t
=
e2t · d

dt (2t)

et
=

2e2t

et
=

2 (et)
2

et
= 2et = 2x �

Note: This can also be done by observing that y = e2t = (et)
2

= x2 to begin with.

2. Evaluate any three (3) of the integrals a–f. [15 = 3 × 5 each]

a.

∫
ln(x)

x
dx b.

∫
1√

z2 − 1
dz c.

∫ 4

1

√
x dx

d.

∫ 1

0

x2 + 2

x2 + 1
dx e.

∫
tan2(w) dw f.

∫ ln(2)

0

e2t dt

Solutions to 2.

a. Use the substitution u = ln(x), so du = 1
x dx:∫

ln(x)

x
dx =

∫
u du = u2 + C = (ln(x))

2
+ C �
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b. Use the trigonometric substition z = sec(θ), so dz = sec(θ) tan(θ) dθ:∫
1√

z2 − 1
dz =

∫
1√

sec2(θ)− 1
sec(θ) tan(θ) dθ =

∫
1√

tan2(θ)
sec(θ) tan(θ) dθ

=

∫
1

tan(θ)
sec(θ) tan(θ) dθ =

∫
sec(θ) dθ

= ln (sec(θ) + tan(θ)) + C = ln
(
z +

√
z2 − 1

)
+ C �

c. Use the Power Rule for integration:

∫ 4

1

√
x dx =

∫ 4

1

x1/2 dx =
x3/2

3/2

∣∣∣∣4
1

=
2

3

(√
x
)3∣∣∣∣4

1

=
2

3

(√
4
)3
− 2

3

(√
1
)3

=
2

3
23 − 2

3
=

14

3
�

d. Observe that the integrand is a rational function in which the degree of the numerator
is not less than the degree of the denominator. This means that we need to divide the
denominator into the numerator first, which is very easy in this case:

x2 + 2

x2 + 1
=

(
x2 + 1

)
+ 1

x2 + 1
=
x2 + 1

x2 + 1
+

1

x2 + 1
= 1 +

1

x2 + 1

Hence ∫ 1

0

x2 + 2

x2 + 1
dx =

∫ 1

0

(
1 +

1

x2 + 1

)
=

∫ 1

0

1 dx+

∫ 1

0

1

x2 + 1
dx

= x|10 + arctan(x)|10 = [1− 0] + [arctan(1)− arctan(0)]

= 1 +
[π

4
− 0
]

= 1 +
π

4
. �

e. Use the trigonometric identity tan2(w) = sec2(w)− 1:∫
tan2(w) dw =

∫ (
sec2(w)− 1

)
dw =

∫
sec2(w) dw−

∫
1 dw = tan(w)−w+C �

f. Use the substitution u = 2t, so du = 2 dt and
1

2
du = dt. Note that

x 0 ln(2)
u 0 2ln(2)

.

∫ ln(2)

0

e2t dt =

∫ 2ln(2)

0

eu
1

2
du =

1

2
eu|2ln(2)0 =

1

2

(
e2ln(2) − e0

)
=

(
eln(2)

)2 − 1

2
=

22 − 1

2
=

4− 1

2
=

3

2
�
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3. Do any five (5) of a–i. [25 = 5 × 5 each]

a. Use the limit definition of the derivative to compute g′(0) for g(x) = 2x+ 1.

b. Determine whether the series
∞∑

n=2

1

nln(n)
converges or diverges.

c. Find the Taylor series of f(x) = ex+1 at a = 0.

d. Sketch the polar curve r = 1, where 0 ≤ θ ≤ 2π, and find the area of the region
it encloses.

e. Sketch the surface obtained by rotating y =
x2

2
, 0 ≤ x ≤ 2, about the y-axis, and

find its area.

f. Use the Right-hand Rule to compute the definite integral

∫ 1

0

4x dx.

g. Use the ε− δ definition of limits to verify that lim
x→0

(2x− 1) = −1.

h. Find the interval of convergence of the power series

∞∑
n=0

x2n

n!
.

i. Sketch the solid obtained by rotating the region bounded by y = x, y = 0, and
x = 2, about the x-axis, and find its volume.

Solutions to 3.

a. g′(0) = lim
h→0

g(0 + h)− g(0)

h
= lim

h→0

g(h)− g(0)

h
= lim

h→0

(2h− 1)− (2 · 0− 1)

h

= lim
h→0

2h− 1− (−1)

h
= lim

h→0

2h

h
= lim

h→0
2 = 2 �

b. Note that f(x) =
1

xln(x)
is positive and continuous for x ≥ 2, and also decreasing,

because xln(x) is clearly increasing to ∞ as x→∞. Since an = f(n), it follows from
the Integral Test that the given series will converge or diverge depending on whether

the improper integral

∫ ∞
2

1

xln(x)
dx converges or diverges. Since the improper integral

actually diverges,

∫ ∞
2

1

xln(x)
dx = lim

t→∞

∫ t

2

1

xln(x)
dx = lim

t→∞

∫ ln(t)

ln(2)

1

u
du = lim

t→∞
ln(u)|ln(t)ln(2)

(Using the substitution u = ln(x), so du =
1

x
dx.)

= lim
t→∞

[ln (ln(t))− ln (ln(2))] =∞ (As ln(z)→∞ when z →∞.)

the series
∞∑

n=2

1

nln(n)
diverges as well. �
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c. (Direct.) Note that f(x) = ex+1 = e · ex, so f ′(x) = e · d
dxe

x = e · ex = f(x). It follows

that f (n)(x) = f(x) = e · ex for every n ≥ 0, and so f (n)(0) = f(0) = e · e0 = e · 1 = e
for every n ≥ 0. Plugging this into Taylor’s Formula gives us

∞∑
n=0

f (n)(0)

n!
xn =

∞∑
n=0

e

n!
xn �

c. (Indirect.) We know that the Taylor series of ex at 0 is
∞∑

n=0

xn

n!
. Thus

f(x) = ex+1 = e · ex = e
∞∑

n=0

xn

n!
=
∞∑

n=0

e

n!
xn ,

and this last must be the Taylor series for f(x) = ex+1 at 0, because only one power
series can fill this role. �

d. Since 0 ≤ θ ≤ 2π, the curve goes all the way around the origin, and since r = 1
it follows that the curve consists of all the points which are a distance of 1 from the
origin. This means that the curve is the circle of radius 1 centred at the origin – here’s
a sketch:

– and so has area π12 = π. �

e. Here’s a sketch of the surface:

To find its area, we will use the formula for the area of a surface of revolution. Since
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y =
x2

2
,
dy

dx
=

1

2
2x = x. Hence

Area =

∫ 2

0

2πx

√
1 +

(
dy

dx

)2

dx = π

∫ 2

0

2x
√

1 + x2 dx = π

∫ 5

1

√
u du

We substituted u = 1 + x2, so du = 2x dx and
x 0 2
u 1 5

.

= π

∫ 5

1

u1/2 du =
2

3
πu3/2

∣∣∣∣5
1

=
2

3
π5
√

5− 2

3
π1
√

1 =
2

3
π
(

5
√

5− 1
)
. �

f. Plug and chug! Recall that the Right-hand Rule formula is∫ b

a

f(x) dx = lim
n→∞

n∑
i=1

b− a
n
· f
(
a+ i

b− a
n

)
,

so ∫ 1

0

4x dx = lim
n→∞

n∑
i=1

1− 0

n
· 4
(

0 + i
1− 0

n

)
= lim

n→∞

n∑
i=1

1

n
· 4 i
n

= lim
n→∞

4

n2

n∑
i=1

i = lim
n→∞

4

n2
· n(n+ 1)

2
= lim

n→∞

2(n+ 1)

n

= lim
n→∞

(
2n

n
+

2

n

)
= lim

n→∞

(
2 +

2

n

)
= 2 + 0 = 2 . �

g. We need to verify that for every ε > 0, there is some δ > 0, such that if |x − 0| < δ,
then |(2x− 1)− (−1)| < ε. As usual, we will try to reverse-engineer the necessary δ
from ε. Suppose an ε > 0 is given. Then

|(2x− 1)− (−1)| < ε⇔ |2x− 1 + 1| < ε⇔ |2x| < ε⇔ |x| < ε

2
⇔ |x− 0| < ε

2
,

so δ =
ε

2
will do the job. Note that every step of our reverse-engineering process above

is reversible, so if |x− 0| < δ =
ε

2
, then |(2x− 1)− (−1)| < ε. �

h. We will use the Ratio Test to find the radius of convergence.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣
x2(n+1)

(n+1)!

x2n

n!

∣∣∣∣∣∣ = lim
n→∞

∣∣∣∣x2n+2

x2n
· n!

(n+ 1)!

∣∣∣∣ = lim
n→∞

∣∣∣∣ x2

n+ 1

∣∣∣∣ = 0 ,

since x2 → x2 and n+1→∞ as n→∞. It follows that

∞∑
n=0

x2n

n!
converges (absolutely)

for all x, i.e. the radius of convergence is R = ∞ and the interval of convergence is
(−∞,∞). �
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i. Here’s a sketch of the solid:

We will use the disk/washer method to find its volume. Note that the cross-section
of the solid for a fixed value of x is a washer outer radius R = y − 0 = y = x and inner
radius r = 0 (so it’s really a disk). Thus

Volume =

∫ 2

0

π
(
R2 − r2

)
dx =

∫ 2

0

π
(
x2 − 02

)
dx

=

∫ 2

0

πx2 dx = π
x3

3

∣∣∣∣2
0

= π
23

3
− π 03

3
=

8

3
π . �

Part Y. Do any three (3) of 4–7. [45 = 3 × 15 each]

4. A zombie is dropped into a still pool, creating a circular ripple that moves outward
from the point of impact at a constant speed. After 2 s the length of the ripple is
increasing at a rate of 2π m/s. How is the area enclosed by the ripple changing at
this instant?

Hint: You have (just!) enough information to work out how the radius of the ripple
changes with time.

Solution. Recall that the length, i.e. circumference, of a circle of radius r is C = 2πr,
while the area it encloses is A = πr2. In this case r = r(t) changes with time: what we are

given amounts to (1)
dr

dt
is constant and (2)

dC

dt

∣∣∣∣
t=2

= 2π, and what we are being asked

to compute is
dA

dt

∣∣∣∣
t=2

.
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Ignoring the hint for the moment, observe that
dC

dt
=

d

dt
2πr = 2π

dr

dt
. Then

dA

dt
=

d

dt
πr2 = π

dr2

dr
· dr
dt

= π2r
dr

dt
= r

(
2π
dr

dt

)
= r

dC

dt
,

so
dA

dt

∣∣∣∣
t=2

= r(2)
dC

dt

∣∣∣∣
t=2

= 2πr(2). The problem is that we do not know what r(2) is.

Following the hint, we will try to figure out the radius of the ripple, r(t), as a function
of time, and then compute r(2). There is one more piece of information in the set-up that
we have not made explicit yet: (0) r(0) = 0, since the ripple was only created at the instant
that the zombie fell into the pool.

Now, since
dr

dt
is constant, r(t) = mt + b for some constants m and b. (Obviously,

m = dr
dt .) Note that b = m0 + b = r(0) = 0, using the observation above, so r(t) = mt.

Since

2π =
dC

dt

∣∣∣∣
t=2

= 2π
dr

dt

∣∣∣∣
t=2

= 2πm ,

we have that m =
dr

dt
= 1, so r(t) = t. It follows that r(2) = 2, and thus

dA

dt

∣∣∣∣
t=2

=

r(2)
dC

dt

∣∣∣∣
t=2

= 2πr(2) = 2π · 2 = 4π. �

5. Find all the intercepts, maximum, minimum, and inflection points, and all the vertical

and horizontal asymptotes of h(x) =
x

1− x2
, and sketch its graph.

Solution. i. (y-intercept) Plug in x = 0: h(0) =
0

1− 02
=

0

1
= 0.

ii. (x-intercept) y = h(x) =
x

1− x2
= 0 if and only if x = 0.

Note: Thus the sole x- and y-intercept is the point (0, 0).

iii. (Vertical asymptotes) h(x) =
x

1− x2
is a rational function and hence defined and

continuous whenever the denominator 1− x2 6= 0, so any vertical asymptotes could occur
only when 1− x2 = 0, i.e. when x = ±1. We’ll take limits from both directions at x = ±1
and see what happens. Note that 1 − x2 → 0 as |x| → 1, so each of these limits must
approach some infinity.

lim
x→−1−

x

1− x2
= +∞ since 1− x2 < 0 when x < −1;

lim
x→−1+

x

1− x2
= −∞ since 1− x2 > 0 when −1 < x < 0;

lim
x→1−

x

1− x2
= +∞ since 1− x2 > 0 when 0 < x < 1;

lim
x→1+

x

1− x2
= −∞ since 1− x2 < 0 when x > 1;
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Thus h(x) has vertical asymptotes at both x = −1 and x = +1, heading up to +∞ from
the left and down to −∞ from the right of each point.

iv. (Horizontal asymptotes) One could compute the necessary limits with the help of
l’Hôpital’s Rule, but it’s pretty easy to do with a little algebra too:

lim
x→−∞

x

1− x2
= lim

x→−∞

x

1− x2
·

1
x2

1
x2

= lim
x→−∞

x
x2

1
x2 − x2

x2

= lim
x→−∞

1
x

1
x2 − 1

=
0

0− 1
= 0

lim
x→+∞

x

1− x2
= lim

x→+∞

x

1− x2
·

1
x2

1
x2

= lim
x→+∞

x
x2

1
x2 − x2

x2

= lim
x→+∞

1
x

1
x2 − 1

=
0

0− 1
= 0

Thus h(x) has the horizontal asymptote y = 0 in both directions.

v. (Maxima and minima) Note that h(x) is defined and differentiable wherever it is defined
because it is a rational function. First, we compute h′(x) using the Quotient Rule:

h′(x) =
d

dx

(
x

1− x2

)
=

dx
dx ·

(
1− x2

)
− x · d

dx

(
1− x2

)
(1− x2)

2

=
1 ·
(
1− x2

)
− x · (0− 2x)

(1− x2)
2 =

1− x2 + 2x2

(1− x2)
2 =

1 + x2

(1− x2)
2

Second, we find all the critical points, i.e. the points where h′(x) is 0 or undefined.

h′(x) =
1 + x2

(1− x2)
2 = 0 exactly when 1 +x2 = 0, which is to say never, since 1 +x2 ≥ 1 > 0

for all x. h′(x) =
1 + x2

(1− x2)
2 is defined and continuous unless 1−x2 = 0, i.e. when x = ±1.

Since h(x) has no critical points except where it has vertical asymptotes, h(x) has no local
maxima or minima.

Just for fun, here is the usual table for intervals of increase and decrease:

x < −1 ∈ (−1, 1) > 1
h′(x) − + −
h(x) ↓ ↑ ↓

vi. (Inflection points) First, we compute h′′(x) using the Quotient Rule:

h′′(x) =
d

dx

(
1 + x2

(1− x2)
2

)
=

d
dx

(
1 + x2

)
·
(
1− x2

)2 − (1 + x2
)
· d
dx

(
1− x2

)2
(1− x2)

4

=
2x ·

(
1− x2

)2 − (1 + x2
)
· 2
(
1− x2

)
(0− 2x)

(1− x2)
4

=
2x ·

(
1− x2

)
−
(
1 + x2

)
· 2(−2x)

(1− x2)
3 =

2x− 2x3 + 4x+ 4x3

(1− x2)
3

=
6x+ 2x3

(1− x2)
3 =

2x
(
3 + x2

)
(1− x2)

3
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Second, we find all the potential inflection points, i.e. the points where h′′(x) is 0 or

undefined. h′′(x) =
2x
(
3 + x2

)
(1− x2)

3 = 0 exactly when either x = 0 or when 3 + x2 = 0 (which

can’t happen because 3 + x2 ≥ 3 > 0 for all x). h′′(x) =
2x
(
3 + x2

)
(1− x2)

3 is defined and

continuous unless 1 − x2 = 0, i.e. when x = ±1, which are the points where h(x) has
vertical asymptotes. Thus x = 0 is the only possible point of inflection. Third, we test it
to see if it really is, building the usual table:

x < −1 ∈ (−1, 0) 0 ∈ (0, 1) > 1
h′′(x) + − 0 + 1

concavity ↑ ↓ ↑ ↓

Thus x = 0 is indeed an inflection point of h(x).

vii. (Graph) Here is the graph of h(x) = x
1−x2 :

Cheating just a little, it was generated using the following Maple command:

> plot([[s,s/(1-s^2),s=-4..-1],[s,s/(1-s^2),s=-1..1],

[s,s/(1-s^2),s=1..4]],x=-4..4,y=-3..3);

�

6. Show that a cone with base radius 1 and height 2 has volume 2
3π.

Hint: It’s a solid of revolution . . .

Solution. Following the hint, we need to realize the cone as a solid of revolution. One
can obtain a (“right-circular”) cone by rotating a right-angled triangle whose base is a
radius of the base of the cone and whose altitude is the axis of symmetry of the cone. The
hypotenuse of the triangle then runs along the surface of the cone from the tip to the base.
We will set up our coordinate system so that the origin is at the right angle of the triangle,
the x-axis runs along the base (the side that is the radius of the cone), and the y-axis runs
along the altitude (the side that is the axis of symmetry of the cone). Since the cone has
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base radius 1 and height 2, the hypotenuse of the triangle is the line segment joining (0, 2)
to (1, 0).as in the diagram. It is not hard to work out that the equation of the line forming
the hypotenuse of the triangle is y = −2x+ 2.

Thus we are trying to find the volume of the solid of revolution obtained by revolving
the region bounded by x = 0, y = 0, and y = −2x+ 2 about the y-axis, i.e. about the line
x = 0. The volume can be computed readily using either the disk/washer method or the
method of cylindrical shells. Since we used disks in the solution to 3i (note that the solid
of revolution there was a cone as well), we will use cylindrical shells here.

Since we revolved the region about the y-axis, a typical shell is obtained by revolving
a vertical cross-section of the region, that is, one for a fixed value of x, about the y-axis.
The shell for a given value of x has radius r = x and height h = y − 0 = −2x + 2, and
so has surface area 2πrh = 2πx(−2x+ 2) = 4π

(
x− x2

)
. Note that since we revolved the

region about the y-axis and are using shells, we need to integrate with respect to x, and
the possible values of x in the triangle are 0 ≤ x ≤ 1. Thus the volume of the cone is:

Volume =

∫ 1

0

2πrh dx =

∫ 1

0

4π
(
x− x2

)
dx = 4π

(
x2

2
− x3

3

)∣∣∣∣1
0

= 4π

[(
12

2
− 13

3

)
−
(

02

2
− 03

3

)]
= 4π

([
1

2
− 1

3

]
− 0

)
= 4π

1

6
=

2

3
π �
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7. Do all four (4) of a–d.

a. Use Taylor’s formula to find the Taylor series of f(x) = sin(x) at a = 0. [7]

b. Determine the radius and interval of convergence of this Taylor series. [4]

c. Find the Taylor series of g(x) = x sin(x) at a = 0 by multiplying the Taylor series
for f(x) = sin(x) by x. [1]

d. Use Taylor’s formula and your series from c to compute g(16)(0). [3]

Solution to a. Recall that the Taylor series of f(x) at a = 0 is
∑∞

n=0
f(n)(0)

n! xn, so we’ll
need to know what the values of the nth derivatives of f(x) = sin(x) are at 0:

n f (n)(x) f (n)(0)
0 sin(x) 0
1 cos(x) 1
2 − sin(x) 0
3 − cos(x) −1
4 sin(x) 0
5 cos(x) 1
6 − sin(x) 0
...

...
...

2k (−1)k sin(x) 0
2k + 1 (−1)k cos(x) (−1)k

...
...

...

Note that f (n)(0) = 0 when n is even, and alternates between 1 and −1 when n is odd. It

follows that the Taylor series of f(x) = sin(x) at a = 0 is
∞∑
k=0

(−1)k

(2k + 1)!
x2k+1. �

Solution to b. We will use the Ratio Test to find the radius of convergence.

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

∣∣∣∣∣∣
(−1)k+1

(2(k+1)+1)!x
2(k+1)+1

(−1)k
(2k+1)!x

2k+1

∣∣∣∣∣∣ = lim
k→∞

∣∣∣∣ (−1)k+1x2k+3

(2k + 3)!
· (2k + 1)!

(−1)kx2k+1

∣∣∣∣
= lim

k→∞

∣∣∣∣ (−1)x2

(2k + 3)(2k + 2)

∣∣∣∣ = lim
k→∞

x2

(2k + 3)(2k + 2)
= 0 ,

since x2 → x2 and (2k+3)(2k+2)→∞ as k →∞. It follows that the series converges (ab-
solutely) for all x, i.e. the radius of convergence is R =∞ and the interval of convergence
is (−∞,∞). �

Solution to c. If g(x) = x sin(x) then the Taylor series at a = 0 of g(x) should be the
Taylor series for f(x) = sin(x) multiplied by by x:

∞∑
n=0

g(n)(0)

n!
xn = x

∞∑
n=0

f (n)(0)

n!
xn = x

∞∑
k=0

(−1)k

(2k + 1)!
x2k+1 =

∞∑
k=0

(−1)k

(2k + 1)!
x2k+2 �
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Solution to d. By Taylor’s formula the coefficient of x16 in the Taylor series of g(x)

is
g(16)(0)

16!
. x16 occurs in

∞∑
k=0

(−1)k

(2k + 1)!
x2k+2 when 2k + 2 = 16, i.e. when k = 7. The

coefficient of x16 is therefore
(−1)7

(2 · 7 + 1)!
=
−1

15!
. We compare this to the coefficient given

by Taylor’s formula,
g(16)(0)

16!
=
−1

15!
, and solve for g(16)(0) = 16!

−1

15!
= −16. �

[Total = 100]

Part Z. Bonus problems! Do them (or not), if you feel like it.

ln
(
1
e

)
. Does lim

n→∞

[(
n∑

k=1

1

k

)
− ln(n)

]
exist? Explain why or why not. [2]

Solution. It does exist. The real number computed by this limit is often called the
Euler-Mascheroni constant, about which surprisingly little is known. (For example, we
don’t even know if it is rational or irrational.) The Wikipedia article about it at

http://en.wikipedia.org/wiki/Euler-mascheroni constant

is good place to start learning about it. A little searching (not in the article just referred
to, although the graph there interpreting the limit as an area is a clue) should turn up a
proof the limit exists. �

ln
(
1
1

)
. Write a haiku touching on calculus or mathematics in general. [2]

haiku?

seventeen in three:
five and seven and five of

syllables in lines

Solution. You’re on your own on this one! �

12


