Mathematics 1101Y – Calculus I: functions and calculus of one variable TRENT UNIVERSITY, 2010–2011 Final Examination

Time: 14:00–17:00, on Tuesday, 26 April, 2011. Brought to you by Стефан Біланюк. **Instructions:** Do parts **X** and **Y** and, if you wish, part **Z**. Show all your work and justify all your answers. If in doubt about something, **ask!**

Aids: Calculator; one aid sheet (all sides!); one brain $(10^{100} \text{ neuron limit})$.

Part X. Do all three (3) of 1-3.

1. Compute $\frac{dy}{dx}$ as best you can in any three (3) of **a**-f. $[15 = 3 \times 5 \text{ each}]$ **a.** $y = \cos(e^x)$ **b.** $y = \int_1^x e^t \ln(t) dt$ **c.** $y = x \ln(x)$ **d.** $u = \frac{\ln(x)}{2}$ **e.** $\arctan(x + u) = 0$ **f.** $x = e^t$

d.
$$y = \frac{\ln(x)}{x}$$
 e. $\arctan(x+y) = 0$ **f.** $\frac{x = e^{t}}{y = e^{2t}}$

2. Evaluate any three (3) of the integrals $\mathbf{a}-\mathbf{f}$. $[15 = 3 \times 5 \text{ each}]$

a.
$$\int \frac{\ln(x)}{x} dx$$
 b. $\int \frac{1}{\sqrt{z^2 - 1}} dz$ **c.** $\int_1^4 \sqrt{x} dx$
d. $\int_0^1 \frac{x^2 + 2}{x^2 + 1} dx$ **e.** $\int \tan^2(w) dw$ **f.** $\int_0^{\ln(2)} e^{2t} dt$

3. Do any five (5) of **a**–**i**. $[25 = 5 \times 5 \text{ each}]$

- **a.** Use the limit definition of the derivative to compute g'(0) for g(x) = 2x + 1.
- **b.** Determine whether the series $\sum_{n=2}^{\infty} \frac{1}{n \ln(n)}$ converges or diverges.
- **c.** Find the Taylor series of $f(x) = e^{x+1}$ at a = 0.
- **d.** Sketch the polar curve r = 1, where $0 \le \theta \le 2\pi$, and find the area of the region it encloses.
- e. Sketch the surface obtained by rotating $y = \frac{x^2}{2}$, $0 \le x \le 2$, about the *y*-axis, and find its area.
- **f.** Use the Right-hand Rule to compute the definite integral $\int_{0}^{1} 4x \, dx$.
- **g.** Use the $\varepsilon \delta$ definition of limits to verify that $\lim_{x \to 0} (2x 1) = -1$.
- **h.** Find the interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{x^{2n}}{n!}$.
- i. Sketch the solid obtained by rotating the region bounded by y = x, y = 0, and x = 2, about the x-axis, and find its volume.

Part Y. Do any three (3) of 4-7. $[45 = 3 \times 15 \text{ each}]$

4. A zombie is dropped into a still pool, creating a circular ripple that moves outward from the point of impact at a constant speed. After 2 s the length of the ripple is increasing at a rate of $2\pi m/s$. How is the area enclosed by the ripple changing at this instant?

Hint: You have (just!) enough information to work out how the radius of the ripple changes with time.

- 5. Find all the intercepts, maximum, minimum, and inflection points, and all the vertical and horizontal asymptotes of $h(x) = \frac{x}{1-x^2}$, and sketch its graph.
- 6. Show that a cone with base radius 1 and height 2 has volume $\frac{2}{3}\pi$. *Hint:* It's a solid of revolution ...
- **7.** Do all *four* (4) of **a**–**d**.
 - **a.** Use Taylor's formula to find the Taylor series of $f(x) = \sin(x)$ at a = 0. [7]
 - **b.** Determine the radius and interval of convergence of this Taylor series. [4]
 - **c.** Find the Taylor series of $g(x) = x \sin(x)$ at a = 0 by multiplying the Taylor series for $f(x) = \sin(x)$ by x. [1]
 - **d.** Use Taylor's formula and your series from **c** to compute $g^{(16)}(0)$. [3]

|Total = 100|

Part Z. Bonus problems! Do them (or not), if you feel like it.

$$\ln\left(\frac{1}{e}\right)$$
. Does $\lim_{n \to \infty} \left[\left(\sum_{k=1}^{n} \frac{1}{k} \right) - \ln(n) \right]$ exist? Explain why or why not. [2]

 $\ln\left(\frac{1}{1}\right)$. Write a haiku touching on calculus or mathematics in general. [2]

haiku?

seventeen in three: five and seven and five of syllables in lines

I HOPE THAT YOU ENJOYED THIS COURSE, AND EVEN LEARNED A THING OR TWO. :-) HAVE A GREAT SUMMER!