Mathematics 1101Y - Calculus I: functions and calculus of one variable Trent University, 2010-2011
 Final Examination

Time: 14:00-17:00, on Tuesday, 26 April, 2011. Brought to you by Стефан Біланюк. Instructions: Do parts \mathbf{X} and \mathbf{Y} and, if you wish, part \mathbf{Z}. Show all your work and justify all your answers. If in doubt about something, ask!
Aids: Calculator; one aid sheet (all sides!); one brain (10^{100} neuron limit).
Part X. Do all three (3) of 1-3.

1. Compute $\frac{d y}{d x}$ as best you can in any three (3) of a-f. [15 $=3 \times 5$ each]
a. $y=\cos \left(e^{x}\right)$
b. $y=\int_{1}^{x} e^{t} \ln (t) d t$
c. $y=x \ln (x)$
d. $y=\frac{\ln (x)}{x}$
e. $\arctan (x+y)=0$
f. $\begin{gathered}x=e^{t} \\ y=e^{2 t}\end{gathered}$
2. Evaluate any three (3) of the integrals a-f. $\quad[15=3 \times 5$ each $]$
a. $\int \frac{\ln (x)}{x} d x$
b. $\int \frac{1}{\sqrt{z^{2}-1}} d z$
c. $\int_{1}^{4} \sqrt{x} d x$
d. $\int_{0}^{1} \frac{x^{2}+2}{x^{2}+1} d x$
e. $\int \tan ^{2}(w) d w$
f. $\int_{0}^{\ln (2)} e^{2 t} d t$
3. Do any five (5) of $\mathbf{a}-\mathbf{i} . \quad[25=5 \times 5$ each]
a. Use the limit definition of the derivative to compute $g^{\prime}(0)$ for $g(x)=2 x+1$.
b. Determine whether the series $\sum_{n=2}^{\infty} \frac{1}{n \ln (n)}$ converges or diverges.
c. Find the Taylor series of $f(x)=e^{x+1}$ at $a=0$.
d. Sketch the polar curve $r=1$, where $0 \leq \theta \leq 2 \pi$, and find the area of the region it encloses.
e. Sketch the surface obtained by rotating $y=\frac{x^{2}}{2}, 0 \leq x \leq 2$, about the y-axis, and find its area.
f. Use the Right-hand Rule to compute the definite integral $\int_{0}^{1} 4 x d x$.
g. Use the $\varepsilon-\delta$ definition of limits to verify that $\lim _{x \rightarrow 0}(2 x-1)=-1$.
h. Find the interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{x^{2 n}}{n!}$.
i. Sketch the solid obtained by rotating the region bounded by $y=x, y=0$, and $x=2$, about the x-axis, and find its volume.

Part Y. Do any three (3) of $\mathbf{4 - 7}$. [45 $=3 \times 15$ each]
4. A zombie is dropped into a still pool, creating a circular ripple that moves outward from the point of impact at a constant speed. After $2 s$ the length of the ripple is increasing at a rate of $2 \pi \mathrm{~m} / \mathrm{s}$. How is the area enclosed by the ripple changing at this instant?
Hint: You have (just!) enough information to work out how the radius of the ripple changes with time.
5. Find all the intercepts, maximum, minimum, and inflection points, and all the vertical and horizontal asymptotes of $h(x)=\frac{x}{1-x^{2}}$, and sketch its graph.
6. Show that a cone with base radius 1 and height 2 has volume $\frac{2}{3} \pi$.

Hint: It's a solid of revolution ...

7. Do all four (4) of $\mathbf{a - d}$.
a. Use Taylor's formula to find the Taylor series of $f(x)=\sin (x)$ at $a=0$. [7$]$
b. Determine the radius and interval of convergence of this Taylor series. [4]
c. Find the Taylor series of $g(x)=x \sin (x)$ at $a=0$ by multiplying the Taylor series for $f(x)=\sin (x)$ by x. [1]
d. Use Taylor's formula and your series from \mathbf{c} to compute $g^{(16)}(0)$. [3]

$$
[\text { Total }=100]
$$

Part Z. Bonus problems! Do them (or not), if you feel like it.
$\ln \left(\frac{1}{e}\right)$. Does $\lim _{n \rightarrow \infty}\left[\left(\sum_{k=1}^{n} \frac{1}{k}\right)-\ln (n)\right]$ exist? Explain why or why not. [2]
$\ln \left(\frac{1}{1}\right)$. Write a haiku touching on calculus or mathematics in general. [2]

haiku?

seventeen in three:
five and seven and five of syllables in lines

I hope that you enjoyed this course, AND EVEN LEARNED A THING OR TWO. :-)
Have a great summer!

