Mathematics 1101Y-Calculus I: functions and calculus of one variable Trent University, 2010-2011

Assignment \#7
Bad function!
Due on Friday, 21 January, 2011.
The following function was mentioned in class last term:

$$
f(x)= \begin{cases}1 & x \text { is rational } \\ 0 & x \text { is irrational }\end{cases}
$$

It is a standard example in calculus-related courses of a function which is not continuous at any point:

1. Using the $\varepsilon-\delta$ definition of limits, explain why $\lim _{x \rightarrow a} f(x)$ is undefined for any a. [5]

Hint: No matter how close together $c<d$ are, (c, d) will contain both rational numbers and irrational numbers.

It follows from 1 that $f(x)$ can't be continuous at any point: no limits, no continuity. Note that because the output of $f(x)$ is bounded, it has no asymptotes: all of its discontinuities are jump discontinuities.
$f(x)$ is also badly behaved from the standpoint of Riemann integration:
2. Using the definition of the definite integral given in $\S 5.2$, explain why $\int_{a}^{b} f(x) d x$ is undefined for any $a<b$. [5]
Hint: No matter how close together $c<d$ are, (c, d) will contain both rational numbers and irrational numbers. [Yes, it's the same hint!]
Note that Theorem 3 of $\S 5.2$ guarantees that any function with only finitely many jump discontinuities (and no asymptotes) in $a, b]$ will be integrable on $[a, b]$.

More sophisticated definitions of integration (generalized Riemann integration and Lebesgue integration, for two) can make sense of $\int_{a}^{b} f(x) d x$.
Bonus. What should $\int_{a}^{b} f(x) d x$ be equal to? Why (very roughly)? [1]

