Mathematics 1101Y-Calculus I: functions and calculus of one variable Trent University, 2010-2011

Assignment \#4 π

The Gamma function
Due on Friday, 8 April, 2011.
The Gamma function can be defined as follows for $x>0$:

$$
\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t
$$

There are other ways to define $\Gamma(x)$, but this one is probably the easiest to handle with the usual tools of first-year calculus. For some of the other ways, as well as a some information about the function's relationships to various other functions, check out the Wikipedia article about the Gamma function at: http://en.wikipedia.org/wiki/Gamma_function Though we won't verify it, $\Gamma(x)$ is differentiable and integrable wherever it is defined. It turns up with some frequency in various parts of applied mathematics.

1. Verify that the above definition of $\Gamma(x)$ does make sense for all $x>0$, i.e. that the improper integral actually converges. [5]
2. Compute $\Gamma(1)$. [1]
3. Show that $\Gamma(x+1)=x \Gamma(x)$ for all $x>0$. [3]
4. Verify that $\Gamma(n+1)=n$! for every integer $n \geq 0$. [1]

Bonus. Show that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$. [2]

