Mathematics 1101Y – Calculus I: functions and calculus of one variable TRENT UNIVERSITY, 2010–2011

Assignment $#4\pi$ **The Gamma function** *Due on Friday, 8 April, 2011.*

The Gamma function can be defined as follows for x > 0:

$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} \, dt$$

There are other ways to define $\Gamma(x)$, but this one is probably the easiest to handle with the usual tools of first-year calculus. For some of the other ways, as well as a some information about the function's relationships to various other functions, check out the *Wikipedia* article about the Gamma function at: http://en.wikipedia.org/wiki/Gamma_function Though we won't verify it, $\Gamma(x)$ is differentiable and integrable wherever it is defined. It turns up with some frequency in various parts of applied mathematics.

- 1. Verify that the above definition of $\Gamma(x)$ does make sense for all x > 0, *i.e.* that the improper integral actually converges. [5]
- **2.** Compute $\Gamma(1)$. [1]
- **3.** Show that $\Gamma(x+1) = x\Gamma(x)$ for all x > 0. [3]
- 4. Verify that $\Gamma(n+1) = n!$ for every integer $n \ge 0$. [1]

Bonus. Show that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$. [2]