Mathematics 1101Y-Calculus I: functions and calculus of one variable Trent University, 2010-2011

Assignment \#12

Tricks and treats with series
Due on Friday, 8 April, 2011.

1. Suppose you know that $\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2}}=1+\frac{1}{9}+\frac{1}{25}+\frac{1}{49}+\cdots=\frac{\pi^{2}}{8}$. Show that it follows that $\sum_{k=1}^{\infty} \frac{1}{k^{2}}=1+\frac{1}{4}+\frac{1}{9}+\frac{1}{25}+\cdots=\frac{\pi^{2}}{6}$. [3]
Note: The given sums of the two series in $\mathbf{1}$ are correct.
2. Suppose x is a variable and $\sum_{n=0}^{\infty} a_{n} x^{n}=\left(\sum_{n=0}^{\infty} x^{n}\right)^{2}=\left(1+x+x^{2}+x^{3}+\cdots\right)^{2}$. Find a formula for a_{n} in terms of n. [3]
Hint: Work out the first few $a_{n} \mathrm{~s}$ and look for a pattern.
3. Using the fact that $\arctan (x)=\int_{0}^{x} \frac{1}{1+t^{2}} d t$, find a formula for a_{n} in terms of n such that $\arctan (x)=\sum_{n=0}^{\infty} a_{n} x^{n} .[3]$
Hint: Express $\frac{1}{1+t^{2}}$ as a power series and then integrate it term-by-term.
4. Use your answer to 3 to find a series $\sum_{n=0}^{\infty} a_{n}$ whose sum is $\frac{\pi}{4}$. [1]

Note: Variations on this series have been used in the past to compute approximations to π. Nowadays people usually do so with other series that converge faster.

