Mathematics 1101Y - Calculus I: functions and calculus of one variable Trent University, 2010-2011

Assignment \#11

Parameters in polar coordinates, oh my!
Due on Friday, 25 March, 2011.
We will investigate a curve in polar coordinates for which both r and θ are given by functions of a parameter t :

$$
r=\sqrt{5+4 \cos (t)} \text { and } \theta=\arctan \left(\frac{\sin (t)}{2+\cos (t)}\right), \text { where } 0 \leq t \leq 2 \pi
$$

For example, if $t=\frac{2 \pi}{3}$, then $\cos (t)=\cos \left(\frac{2 \pi}{3}\right)=-\frac{1}{2}$ and $\sin (t)=\sin \left(\frac{2 \pi}{3}\right)=\frac{\sqrt{3}}{2}$, so $r=\sqrt{5+4 \cos (t)}=\sqrt{5+4\left(-\frac{1}{2}\right)}=\sqrt{5-2}=\sqrt{3}$ and $\theta=\arctan \left(\frac{\sin (t)}{2+\cos (t)}\right)=$ $\arctan \left(\frac{\frac{\sqrt{3}}{2}}{2+\left(-\frac{1}{2}\right)}\right)=\arctan \left(\frac{\frac{\sqrt{3}}{2}}{\frac{3}{2}}\right)=\arctan \left(\frac{1}{\sqrt{3}}\right)=\frac{\pi}{6}$. This point has Cartesian coordinates $x=r \cos (\theta)=\sqrt{3} \cos \left(\frac{\pi}{6}\right)=\sqrt{3} \frac{\sqrt{3}}{2}=\frac{3}{2}$ and $y=r \sin (\theta)=\sqrt{3} \sin \left(\frac{\pi}{6}\right)=\frac{1}{2}$.

1. Use Maple to plot this curve. [3]
2. Based on your plot, what is this curve? [1]
3. Starting from the given parametric description, work out an equation for this curve in Cartesian coordinates. [2]
4. Starting from the given parametric description, work out an equation for this curve in polar coordinates. [2]
5. Find the area of the region enclosed by this curve. [2]

You may, of course, also use Maple to help you with questions 3-5.

