
Math 1100 — Calculus, Spring Term Test — 2010-02-26

1. Let f : R−→R be a function with the following properties:

• f is thrice-differentiable, and f ′′(x) < 0 and f ′′′(x) > 0 for all x ∈ R.

• f(0) = 0 and f ′(0) > 0.

(A) (B)

(C) (D)

(a) How many maxima or minima (if any) can f have in the interval (−∞, 0)? Justify(10)
your answer.

Solution: f cannot have any maxima or minima in the interval (−∞, 0).

To see this, suppose (by contradiction) that y < 0 was a maxium or minimum. Then Fermat’s
Theorem says that f ′(y) = 0. But f ′ is strictly decreasing (because f ′′ < 0). Thus, if f ′(y) = 0
and y < 0, then we would have f(0) < 0, which is false. By contradiction, f can’t have any
maxima/minima in (−∞, 0).

To see it another way, f ′(y) > 0 for all y ∈ (−∞, 0), so f is strictly increasing in this interval;

hence it can’t have any extrema here. 2

(b) Recall that a point x ∈ R is a zero of f if f(x) = 0. (For example x = 0 is a zero(10)
of f in this case.) How many zeros (if any) can f have in the interval (−∞, 0)?
Justify your answer.

Solution: f cannot have any zeros in the interval (−∞, 0).

To see this, suppose (by contradiction) that x < 0 and f(x) = 0. Then Rolle’s Theorem
says there exists some y ∈ (x, 0) such that f ′(y) = 0. But as we saw in question (a), this is
impossible.



1© A lot of people seemed to think that the endpoint 0 was included in the domain (−∞, 0), and
hence, they counted x = 0 amongst the ‘zeros’ in this domain. This is not correct. The interval
(−∞, 0) is open. It does not include its endpoints. (In contrast, the interval (−∞, 0] is closed,
and does include 0). However, this was a minor issue, and I didn’t deduct any marks for this as
long as the question was otherwise done properly.

A few people also described the point x = −∞ as a ‘minimum’ of the function. First of all,
−∞ is not a real number, so it doesn’t count as a ‘minimum’. Second of all, even if we did
count −∞ as a real number, it would not be included in the open interval (−∞, 0). (If I wanted
to include −∞, I would have written [−∞, 0).) Again, however, I did not deduct marks for this
minor confusion.

2© Several people wrote something like this: “If f is three times differentiable, that means it is a
degree 3 polynomial.” They then proceeded to analyse this ‘polynomial’ —e.g. “a degree 3
polynomial has at most 3 zeros, has at most one maximum and one minimum,” etc. This is
totally wrong. First of all, there is no reason to believe this function is a polynomial. Second all,
any polynomial is infinitely differentiable, so information about the first three derivatives tells
you nothing about the degree of the polynomial.

2

(c) Sketch the possible graph(s) of f on the interval (−∞, 0] to illustrate the scenario(s)(10)
you claim are possible in parts (a) and (b).

Solution: See Figure A. 2

(d) How many maxima or minima (if any) can f have in the interval (0,∞)? Justify(10)
your answer.

Solution: f can have at most one extreme point in the interval (0,∞). If it has any extreme

point, then it must be a maximum .

To see this, suppose (by contradiction) that 0 < x < z are two extreme points. Then Fermat’s
Theorem implies that f ′(x) = 0 = f ′(y). But f ′ is strictly decreasing (because f ′′ < 0), so this
is impossible unless x = y.

Now, let x > 0, and suppose x is an extreme point (so f ′(x) = 0). Then f must be a maximum,
because f ′′(x) < 0 (by hypothesis).

Note: while f can have a maximum, it doesn’t have to. Figures B and C portray two possibilities.

2

(e) How many zeros (if any) can f have in the interval (0,∞)? Justify your answer.(10)

Solution: f can have at most one zero in the interval (0,∞). To see this, suppose 0 < x < z

and we have f(0) = f(x) = f(z) = 0. Then Rolle’s Theorem says there exist some w ∈ (0, x)
such that f ′(w) = 0, and also some y ∈ (x, z) such that f ′(y) = 0. But f ′ is strictly decreasing
(because f ′′ < 0). Thus, we cannot have f ′(w) = 0 = f ′(y) if w < y —contradiction. By
contradiction, f can’t have two zeros in (0,∞).

Note that f can have one zero in (0,∞), but it doesn’t have to. Figures B and C portray two

possibilities. 2

(f) Sketch the possible graph(s) of f on the interval [0,∞) to illustrate the scenario(s)(10)
you claim are possible in parts (d) and (e).

Solution: See Figure B and C. 2

(g) Now suppose there is some function g : R−→R such that f(x) =

∫ x

0

g(x) dx for

all x ∈ R. What can you say about g′ and g′′? Where is g increasing/decreasing?(10)



Where is g concave up or concave down? Use this information to sketch a possible
graph for g.

Solution: The Fundamental Theorem of Calculus says that f ′ = g. Thus, g′ = f ′′ and g′′ = f ′′′.

Thus, we know that g′(x) < 0 and g′′(x) > 0 for all x ∈ R (because f ′′(x) < 0 and f ′′′(x) > 0

for all x ∈ R). Thus, g is decreasing and concave up everywhere on R; see Figure D. 2

2. Compute the following limits:

(a) lim
x→∞

ln(x2 + 1)

x
.(20)

Solution: Let f(x) = ln(x2 + 1) and g(x) = x. Then

lim
x→∞

ln(x2 + 1)

x
= lim

x→∞

f(x)

g(x) (∗)
lim

x→∞

f ′(x)

g′(x)

(†)
lim

x→∞

2x

x2 + 1
= lim

x→∞

2/x

1 + 1/x2

=
lim

x→∞

(2/x)

lim
x→∞

(1 + 1/x2)
=

0

1
= 0.

Here, (∗) is by l’Hospital’s rule, which is applicable because lim
x→∞

f(x) = ∞ = lim
x→∞

g(x).

Next, (†) is because f ′(x) =
2x

x2 + 1
and g′(x) = 1. 2

(b) lim
x→∞

(x2 + 1)1/x.(10)

Solution: This is an indeterminate form of type “∞0”. We take the logarithm, and find that

ln
(

lim
x→∞

(x2 + 1)1/x
)

= lim
x→∞

ln
(

(x2 + 1)1/x
)

= lim
x→∞

1

x
ln(x2 + 1)

= 0,

where the last step is by part (a). Thus, lim
x→∞

(x2 + 1)1/x = e0 = 1. 2

3. Compute the following integrals:

(a)

∫

sin(x)3 cos(x)5 dx.(25)

Solution:
∫

sin(x)3 cos(x)5 dx =

∫

cos(x)5 · sin(x)2 · sin(x) dx
(∗)

∫

cos(x)5 · (1 − cos(x)2) · sin(x) dx

(†)
−

∫

u5 · (1 − u2) du = −
∫

u5 − u7 du = −u6

6
+

u8

8
+ C

(†)

cos(x)8

8
− cos(x)6

6
+ C.

Here (∗) is by Pythagoras’ equation sin(x)2 + cos(x)2 = 1. Next (†) is the substitution u :=

cos(x) so that du = − sin(x) dx. 2

(b)

∫

u√
1 + u2

du.(25)



Solution: Let y := 1 + u2; then dy = 2u du, so u du = 1

2
dy. Thus

∫

u du√
1 + u2

=
1

2

∫

dy√
y

dy =
1

2

∫

y−1/2 dy = y1/2 + C = (1 + u2)1/2 + C.

2

Solution: Another approach uses a ‘trig substitution’. Let u := tan(θ); then du = sec(θ)2 dθ.
Meanwhile,

√

1 + u2 =
√

1 + tan(θ)2 =
√

sec(θ)2 = |sec(θ)| = sec(θ),

where the last step assumes −π/2 < θ < π/2. Substituting this all in, we get
∫

u√
1 + u2

du =

∫

tan(θ)

sec(θ)
· sec(θ)2 dθ =

∫

tan(θ) sec(θ) dθ

= sec(θ) + C = sec(arctan(u)) + C =
√

1 + u2 + C.

where the last step follows from a ‘Pythagoras triangle’ argument. 2

(c)

∫

ln(x)

x ·
√

1 + ln(x)2
dx.(25)

Solution: Let u := ln(x). Then du = 1

x dx. Thus,
∫

ln(x)

x ·
√

1 + ln(x)2
dx =

∫

u√
1 + u2

du
(∗)

(1+u2)1/2 + C =
√

1 + ln(x)2 + C,

here (∗) is by question (b). 2

(d)

∫

x · e−x dx.(25)

Solution: We will use integration by parts. Let u := x, so that du = dx. Let dv := e−x dx; then
v = −e−x. Thus,

∫

x · e−x dx =

∫

u dv = uv −
∫

v du

= −xe−x −
∫

−e−x dx = −xe−x − e−x + C

= −e−x · (x + 1) + C.

2

Common minor mistakes: A lot of people forgot to add the constant term “+C” to
the indefinite integrals. This cost 2 marks (out of 25) per question.

Also, a lot of people forgot to ‘reverse’ their substitutions (e.g. in question #3(b), they
would leave

√
y + C as a final answer). This cost 5 marks (out of 25) per question.

Finally, some divided or multiplied by the wrong constant when antidifferentiation. For
example in question #3(b), they would end up with 1

2

√
1 + u2 + C or 2

√
1 + u2 + C as

a final answer. This cost 5 marks (out of 25) per question.

Major mistakes: Some people tried to differentiate instead of antidifferentiating (e.g.
in question #3(a) they applied the Leibniz rule to differentiate sin(x)3 cos(x)5). Also,

some people tried to ‘factor’ the integral (e.g. they wrote “

∫

sin(x)3 cos(x)5 dx =
∫

sin(x)3 dx ·
∫

cos(x)5 dx”, or at least, antidifferentiated each term separately, as if

this was the case). This is totally wrong.


