Math 1100 - Calculus, Spring Term Test - 2010-02-26

1. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a function with the following properties:

- f is thrice-differentiable, and $f^{\prime \prime}(x)<0$ and $f^{\prime \prime \prime}(x)>0$ for all $x \in \mathbb{R}$.
- $f(0)=0$ and $f^{\prime}(0)>0$.

(a) How many maxima or minima (if any) can f have in the interval $(-\infty, 0)$? Justify your answer.
Solution: f cannot have any maxima or minima in the interval $(-\infty, 0)$.
To see this, suppose (by contradiction) that $y<0$ was a maxium or minimum. Then Fermat's Theorem says that $f^{\prime}(y)=0$. But f^{\prime} is strictly decreasing (because $f^{\prime \prime}<0$). Thus, if $f^{\prime}(y)=0$ and $y<0$, then we would have $f(0)<0$, which is false. By contradiction, f can't have any maxima/minima in $(-\infty, 0)$.
To see it another way, $f^{\prime}(y)>0$ for all $y \in(-\infty, 0)$, so f is strictly increasing in this interval; hence it can't have any extrema here.
(b) Recall that a point $x \in \mathbb{R}$ is a zero of f if $f(x)=0$. (For example $x=0$ is a zero of f in this case.) How many zeros (if any) can f have in the interval $(-\infty, 0)$? Justify your answer.
Solution: f cannot have any zeros in the interval $(-\infty, 0)$.
To see this, suppose (by contradiction) that $x<0$ and $f(x)=0$. Then Rolle's Theorem says there exists some $y \in(x, 0)$ such that $f^{\prime}(y)=0$. But as we saw in question (a), this is impossible.
(1) A lot of people seemed to think that the endpoint 0 was included in the domain $(-\infty, 0)$, and hence, they counted $x=0$ amongst the 'zeros' in this domain. This is not correct. The interval $(-\infty, 0)$ is open. It does not include its endpoints. (In contrast, the interval $(-\infty, 0]$ is closed, and does include 0). However, this was a minor issue, and I didn't deduct any marks for this as long as the question was otherwise done properly.
A few people also described the point $x=-\infty$ as a 'minimum' of the function. First of all, $-\infty$ is not a real number, so it doesn't count as a 'minimum'. Second of all, even if we did count $-\infty$ as a real number, it would not be included in the open interval $(-\infty, 0)$. (If I wanted to include $-\infty$, I would have written $[-\infty, 0)$.) Again, however, I did not deduct marks for this minor confusion.
(2) Several people wrote something like this: "If f is three times differentiable, that means it is a degree 3 polynomial." They then proceeded to analyse this 'polynomial' -e.g. "a degree 3 polynomial has at most 3 zeros, has at most one maximum and one minimum," etc. This is totally wrong. First of all, there is no reason to believe this function is a polynomial. Second all, any polynomial is infinitely differentiable, so information about the first three derivatives tells you nothing about the degree of the polynomial.
(c) Sketch the possible graph(s) of f on the interval $(-\infty, 0]$ to illustrate the scenario(s) you claim are possible in parts (a) and (b).
Solution: See Figure A.
(d) How many maxima or minima (if any) can f have in the interval $(0, \infty)$? Justify your answer.
Solution: f can have at most one extreme point in the interval $(0, \infty)$. If it has any extreme point, then it must be a maximum.
To see this, suppose (by contradiction) that $0<x<z$ are two extreme points. Then Fermat's Theorem implies that $f^{\prime}(x)=0=f^{\prime}(y)$. But f^{\prime} is strictly decreasing (because $f^{\prime \prime}<0$), so this is impossible unless $x=y$.
Now, let $x>0$, and suppose x is an extreme point (so $f^{\prime}(x)=0$). Then f must be a maximum, because $f^{\prime \prime}(x)<0$ (by hypothesis).
Note: while f can have a maximum, it doesn't have to. Figures B and C portray two possibilities.
(e) How many zeros (if any) can f have in the interval $(0, \infty)$? Justify your answer.

Solution: f can have at most one zero in the interval $(0, \infty)$. To see this, suppose $0<x<z$ and we have $f(0)=f(x)=f(z)=0$. Then Rolle's Theorem says there exist some $w \in(0, x)$ such that $f^{\prime}(w)=0$, and also some $y \in(x, z)$ such that $f^{\prime}(y)=0$. But f^{\prime} is strictly decreasing (because $f^{\prime \prime}<0$). Thus, we cannot have $f^{\prime}(w)=0=f^{\prime}(y)$ if $w<y$-contradiction. By contradiction, f can't have two zeros in $(0, \infty)$.
Note that f can have one zero in $(0, \infty)$, but it doesn't have to. Figures B and C portray two possibilities.
(f) Sketch the possible graph(s) of f on the interval $[0, \infty)$ to illustrate the scenario(s) you claim are possible in parts (d) and (e).
Solution: See Figure B and C.
(g) Now suppose there is some function $g: \mathbb{R} \longrightarrow \mathbb{R}$ such that $f(x)=\int_{0}^{x} g(x) d x$ for all $x \in \mathbb{R}$. What can you say about g^{\prime} and $g^{\prime \prime}$? Where is g increasing/decreasing?

Where is g concave up or concave down? Use this information to sketch a possible graph for g.
Solution: The Fundamental Theorem of Calculus says that $f^{\prime}=g$. Thus, $g^{\prime}=f^{\prime \prime}$ and $g^{\prime \prime}=f^{\prime \prime \prime}$. Thus, we know that $g^{\prime}(x)<0$ and $g^{\prime \prime}(x)>0$ for all $x \in \mathbb{R}$ (because $f^{\prime \prime}(x)<0$ and $f^{\prime \prime \prime}(x)>0$ for all $x \in \mathbb{R}$). Thus, g is decreasing and concave up everywhere on \mathbb{R}; see Figure D.
2. Compute the following limits:
(a) $\lim _{x \rightarrow \infty} \frac{\ln \left(x^{2}+1\right)}{x}$.

Solution: Let $f(x)=\ln \left(x^{2}+1\right)$ and $g(x)=x$. Then

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\ln \left(x^{2}+1\right)}{x} & =\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)} \overline{(x)} \lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)} \\
& \overline{(\uparrow)} \lim _{x \rightarrow \infty} \frac{2 x}{x^{2}+1}=\lim _{x \rightarrow \infty} \frac{2 / x}{1+1 / x^{2}} \\
& =\frac{\lim _{x \rightarrow \infty}(2 / x)}{\lim _{x \rightarrow \infty}\left(1+1 / x^{2}\right)}=\frac{0}{1}=0 .
\end{aligned}
$$

Here, $(*)$ is by l'Hospital's rule, which is applicable because $\lim _{x \rightarrow \infty} f(x)=\infty=\lim _{x \rightarrow \infty} g(x)$.
Next, (\dagger) is because $f^{\prime}(x)=\frac{2 x}{x^{2}+1}$ and $g^{\prime}(x)=1$.
(b) $\lim _{x \rightarrow \infty}\left(x^{2}+1\right)^{1 / x}$.

Solution: This is an indeterminate form of type " ∞^{0} ". We take the logarithm, and find that

$$
\begin{aligned}
\ln \left(\lim _{x \rightarrow \infty}\left(x^{2}+1\right)^{1 / x}\right) & =\lim _{x \rightarrow \infty} \ln \left(\left(x^{2}+1\right)^{1 / x}\right)=\lim _{x \rightarrow \infty} \frac{1}{x} \ln \left(x^{2}+1\right) \\
& =0
\end{aligned}
$$

where the last step is by part (a). Thus, $\lim _{x \rightarrow \infty}\left(x^{2}+1\right)^{1 / x}=e^{0}=1$.
3. Compute the following integrals:
(a) $\int \sin (x)^{3} \cos (x)^{5} d x$.

Solution:

$$
\begin{aligned}
\int \sin (x)^{3} \cos (x)^{5} d x & =\int \cos (x)^{5} \cdot \sin (x)^{2} \cdot \sin (x) d x \underset{\overline{(*)}}{\overline{(})} \cos (x)^{5} \cdot\left(1-\cos (x)^{2}\right) \cdot \sin (x) d x \\
& \overline{\overline{(\dagger)}}-\int u^{5} \cdot\left(1-u^{2}\right) d u=-\int u^{5}-u^{7} d u=-\frac{u^{6}}{6}+\frac{u^{8}}{8}+C \\
& \overline{\overline{(\dagger)}} \frac{\cos (x)^{8}}{8}-\frac{\cos (x)^{6}}{6}+C .
\end{aligned}
$$

Here $(*)$ is by Pythagoras' equation $\sin (x)^{2}+\cos (x)^{2}=1$. Next (\dagger) is the substitution $u:=$ $\cos (x)$ so that $d u=-\sin (x) d x$.
(b) $\int \frac{u}{\sqrt{1+u^{2}}} d u$.

Solution: Let $y:=1+u^{2}$; then $d y=2 u d u$, so $u d u=\frac{1}{2} d y$. Thus

$$
\int \frac{u d u}{\sqrt{1+u^{2}}}=\frac{1}{2} \int \frac{d y}{\sqrt{y}} d y=\frac{1}{2} \int y^{-1 / 2} d y=y^{1 / 2}+C=\left(1+u^{2}\right)^{1 / 2}+C .
$$

Solution: Another approach uses a 'trig substitution'. Let $u:=\tan (\theta)$; then $d u=\sec (\theta)^{2} d \theta$. Meanwhile,

$$
\sqrt{1+u^{2}}=\sqrt{1+\tan (\theta)^{2}}=\sqrt{\sec (\theta)^{2}}=|\sec (\theta)|=\sec (\theta)
$$

where the last step assumes $-\pi / 2<\theta<\pi / 2$. Substituting this all in, we get

$$
\begin{aligned}
\int \frac{u}{\sqrt{1+u^{2}}} d u & =\int \frac{\tan (\theta)}{\sec (\theta)} \cdot \sec (\theta)^{2} d \theta=\int \tan (\theta) \sec (\theta) d \theta \\
& =\sec (\theta)+C=\sec (\arctan (u))+C=\sqrt{1+u^{2}}+C
\end{aligned}
$$

where the last step follows from a 'Pythagoras triangle' argument.
(c) $\int \frac{\ln (x)}{x \cdot \sqrt{1+\ln (x)^{2}}} d x$.

Solution: Let $u:=\ln (x)$. Then $d u=\frac{1}{x} d x$. Thus,
$\int \frac{\ln (x)}{x \cdot \sqrt{1+\ln (x)^{2}}} d x=\int \frac{u}{\sqrt{1+u^{2}}} d u \overline{(*)}\left(1+u^{2}\right)^{1 / 2}+C=\sqrt{1+\ln (x)^{2}}+C$, here $(*)$ is by question (b).
(d) $\int x \cdot e^{-x} d x$.

Solution: We will use integration by parts. Let $u:=x$, so that $d u=d x$. Let $d v:=e^{-x} d x$; then $v=-e^{-x}$. Thus,

$$
\begin{aligned}
\int x \cdot e^{-x} d x & =\int u d v=u v-\int v d u \\
& =-x e^{-x}-\int-e^{-x} d x=-x e^{-x}-e^{-x}+C \\
& =-e^{-x} \cdot(x+1)+C .
\end{aligned}
$$

Common minor mistakes: A lot of people forgot to add the constant term " $+C$ " to the indefinite integrals. This cost 2 marks (out of 25) per question.
Also, a lot of people forgot to 'reverse' their substitutions (e.g. in question $\# 3(\mathrm{~b})$, they would leave $\sqrt{y}+C$ as a final answer). This cost 5 marks (out of 25) per question.
Finally, some divided or multiplied by the wrong constant when antidifferentiation. For example in question $\# 3(\mathrm{~b})$, they would end up with $\frac{1}{2} \sqrt{1+u^{2}}+C$ or $2 \sqrt{1+u^{2}}+C$ as a final answer. This cost 5 marks (out of 25) per question.

Major mistakes: Some people tried to differentiate instead of antidifferentiating (e.g. in question $\# 3\left(\right.$ a) they applied the Leibniz rule to differentiate $\left.\sin (x)^{3} \cos (x)^{5}\right)$. Also, some people tried to 'factor' the integral (e.g. they wrote " $\int \sin (x)^{3} \cos (x)^{5} d x=$ $\int \sin (x)^{3} d x \cdot \int \cos (x)^{5} d x$ ", or at least, antidifferentiated each term separately, as if this was the case). This is totally wrong.

