Math 1100 - Calculus, Quiz \#9B - 2009-12-10

Let $f(x):=\frac{x^{2}}{x-2}$, for all $x \in \mathbb{R}$ where this formula makes sense.

1. What is the domain of f ?

Solution: The domain is $(-\infty, 2) \sqcup(2, \infty)$, because the formula for f makes sense for all $x \in \mathbb{R}$ except $x=2$ (where the denominator is zero).
2. What are the x-intercepts and y-intercepts of f ?

Solution: For all $x \in \mathbb{R}$, we have

$$
\left(\frac{x^{2}}{x-2}=0\right) \Longleftrightarrow\left(x^{2}=0\right) \Longleftrightarrow(x=0)
$$

Thus, the sole x-intercept is at $(0,0)$, which is also the y-intercept.
3. What symmetries does f have? Is it odd? even? Periodic?

Solution: f is neither even nor odd. To see this, note that

$$
f(-x)=\frac{(-x)^{2}}{(-x)-2}=\frac{x^{2}}{-x-2}=-\frac{x^{2}}{x+2} \neq \pm f(x) .
$$

Furthermore, f is not periodic.
4. Find all vertical, horizontal, and slant asymptotes of f.

Solution: Since the formula for f breaks down at $x=2$, there is potentially a vertical asymptote there.
We have:

$$
\lim _{x \searrow 2} \frac{x^{2}}{x-2}=\infty \quad \text { and } \quad \lim _{x \searrow 2} \frac{x^{2}}{x-2}=-\infty
$$

To see this, note that the numerator x^{2} is positive for all x close to 2 , while the denominator $x-2$ converges to 0 as $x \rightarrow 2$. Furthermore, $x-2>0$ if $x>2$, while $x-2<0$ if $x<2$.
Next, observe that $f=\frac{\text { quadratic }}{\text { linear }}$, so f should grow roughly linearly as $x \rightarrow \pm \infty$. In other words, we expect a slant asymptote. To identify the slant asymptote, we perform polynomial long division, to obtain:

$$
x^{2}=(x-2)(x+2)+4
$$

Thus, we suspect a slant asymptote along the line $y=x+2$. Let's confirm this:

$$
\frac{x^{2}}{x-2}-(x+2)=\frac{x^{2}}{x-2}-\frac{(x+2)(x-2)}{x-2}=\frac{x^{2}-\left(x^{2}-4\right)}{x-2}=\frac{4}{x-2}
$$

Thus, $\lim _{x \rightarrow \pm \infty} \frac{x^{2}}{x-2}-(x+2)=\lim _{x \rightarrow \pm \infty} \frac{4}{x-2}=0$.
Thus, f has a slant asymptote along the line $y=x+2$, as $x \rightarrow \pm \infty$.
5. Compute f^{\prime}. Use this to find all intervals where f is increasing/decreasing.

Solution: The quotient rule says

$$
f^{\prime}(x)=\frac{(x-2) \cdot 2 x-x^{2} \cdot(1)}{(x-2)^{2}}=\frac{2 x^{2}-4 x-x^{2}}{(x-2)^{2}}=\frac{x^{2}-4 x}{(x-2)^{2}}=\frac{x(x-4)}{(x-2)^{2}} .
$$

Now, f^{\prime} can only change sign at places where it is zero or has a discontinuity. The roots of f^{\prime} are the roots of the numerator $x(x-4)$, which are at 0 and 4 . Also, f^{\prime} has a discontinuity at 2 (where the denominator is 0), We make a table:

Interval	x	$(x-4)$	$(x-2)^{2}$	$f^{\prime}(x)$	f is....
$(-\infty, 0)$	$(-)$	$(-)$	$(+)$	$(+)$	increasing
$(0,2)$	$(+)$	$(-)$	$(+)$	$(-)$	decreasing
$(2,4)$	$(+)$	$(-)$	$(+)$	$(-)$	decreasing
$(4, \infty)$	$(+)$	$(+)$	$(+)$	$(+)$	increasing

6. Find all local maxima and minima of f.

Solution: Fermat's theorem says that extrema can only occur at the critical points of f. Now, f is differentiable everywhere in its domain $(-\infty, 2) \sqcup(2, \infty)$, so

$$
(x \text { is a critical point of } f) \Longleftrightarrow\left(f^{\prime}(x)=0\right) \Longleftrightarrow(x \cdot(x-4)=0) \Longleftrightarrow(x=0 \text { or } x=4)
$$

From the previous question, we see that f is increasing to the left of 0 and decreasing to the right of 0 -thus, 0 is a local maximum. On the other hand, f is decreasing to the left of 4 and increasing to the right of 4 -thus, 4 is a local minimum. Finally, we observe that $f(0)=0$ and $f(4)=8$.
7. Compute $f^{\prime \prime}$. Use this to identify the intervals of concavity and inflection points.

Solution: We have seen that

$$
\begin{aligned}
f^{\prime}(x) & =\frac{x^{2}-4 x}{(x-2)^{2}} . \\
\text { Thus, } \quad f^{\prime \prime}(x) & =\frac{(x-2)^{2} \cdot(2 x-4)-\left(x^{2}-4 x\right) \cdot 2(x-2)}{(x-2)^{4}}=\frac{(x-2) \cdot(2 x-4)-2\left(x^{2}-4 x\right)}{(x-2)^{3}} \\
& =\frac{\left(2 x^{2}-8 x+8\right)-\left(2 x^{2}-8 x\right)}{(x-2)^{3}}=\frac{8}{(x-2)^{3}} .
\end{aligned}
$$

Thus,
$(f$ is concave-up $) \Longleftrightarrow\left(f^{\prime \prime}(x)>0\right) \Longleftrightarrow\left((x-2)^{3}>0\right) \Longleftrightarrow(x-2>0) \Longleftrightarrow(x>2)$.
Likewise, $(f$ is concave-down $) \Longleftrightarrow(x<2)$.
Finally, note that 2 is not an inflection point (even though the concavity changes there) -it is a vertical asymptote.
8. Use all of the above information to sketch the curve of f on its domain.

