Math 1100 - Calculus, Quiz \#9A - 2009-12-07

Let $f(x):=\frac{1}{1+\exp (-x)}-\frac{1}{2}$, for all $x \in \mathbb{R}$ where this formula makes sense.

1. What is the domain of f ?

Solution: The domain is \mathbb{R}, because the formula for f makes sense for all $x \in \mathbb{R}$ (the denominator is never zero, because $\exp (-x)>0$ for all $x \in \mathbb{R})$.
2. What are the x-intercepts and y-intercepts of f ?

Solution: For all $x \in \mathbb{R}$,

$$
\begin{aligned}
(f(x)=0) & \Longleftrightarrow\left(\frac{1}{1+\exp (-x)}=\frac{1}{2}\right) \Longleftrightarrow(2=1+\exp (-x)) \\
& \Longleftrightarrow(1=\exp (-x)) \Longleftrightarrow(x=0)
\end{aligned}
$$

Thus, the only x-intercept (and also, y-intercept) is at (0,0).
3. What symmetries does f have? Is it odd? even? Periodic?

Solution: The function is odd,. To see this, observe that

$$
\begin{aligned}
f(x)+f(-x) & =\frac{1}{1+e^{-x}}-\frac{1}{2}+\frac{1}{1+e^{x}}-\frac{1}{2}=\frac{\left(1+e^{x}\right)+\left(1+e^{-x}\right)}{\left(1+e^{-x}\right)\left(1+e^{x}\right)}-1 \\
& =\frac{2+e^{x}+e^{-x}}{1+e^{-x}+e^{x}+1}-1=\frac{2+e^{x}+e^{-x}}{2+e^{-x}+e^{x}}-1=1-1=0
\end{aligned}
$$

and thus, $f(-x)=-f(x)$.
4. Find all vertical, horizontal, and slant asymptotes of f.

Solution: There are no vertical asymptotes because $f(x)$ is finite for all $x \in \mathbb{R}$. As for horizontal asymptotes, we have:

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{1}{1-\exp (-x)}-\frac{1}{2} & =\frac{1}{1-\lim _{x \rightarrow-\infty} \exp (-x)}-\frac{1}{2} \\
& =\frac{1}{1-\lim _{x \rightarrow \infty} \exp (x)}-\frac{1}{2} \\
& =0-\frac{1}{2}=\sqrt[-\frac{1}{2}]{2} . \\
\text { and } \quad \lim _{x \rightarrow \infty} \frac{1}{1-\exp (-x)}-\frac{1}{2} & =\frac{1}{1-\lim _{x \rightarrow \infty} \exp (-x)}-\frac{1}{2}=\frac{1}{1-0}-\frac{1}{2} \\
& =1-\frac{1}{2}=\frac{1}{2} .
\end{aligned}
$$

5. Compute f^{\prime}. Use this to find all intervals where f is increasing/decreasing.

Solution: The quotient rule says $f^{\prime}(x)=\frac{\exp (-x) \cdot 0-1 \cdot(-\exp (-x))}{(1-\exp (-x))^{2}}=\frac{\exp (-x)}{(1-\exp (-x))^{2}}$.
The denominator of f^{\prime} is always positive (because it is a squared expression). The numerator is also always positive (because $\exp (x)>0$ for all $x \in \mathbb{R}$). Thus, $f^{\prime}(x)$ is always positive, so f is always increasing.
6. Find all local maxima and minima of f.

Solution: f has no critical points, because f^{\prime} is always defined and never zero. Thus, f has no maxima or minima.
7. Compute $f^{\prime \prime}$. Use this to identify the intervals of concavity and inflection points.

Solution: We have seen that

$$
\begin{aligned}
f^{\prime}(x) & =\frac{e^{-x}}{\left(1-e^{-x}\right)^{2}}=\frac{e^{-x}}{1-2 e^{-x}+e^{-2 x}}=\frac{1}{e^{x}-2+e^{-x}} \\
\text { Thus, } \quad f^{\prime \prime}(x) & =\frac{\left(e^{x}-2+e^{-x}\right) \cdot 0-1 \cdot\left(e^{x}-e^{-x}\right)}{\left(e^{x}-2+e^{-x}\right)^{2}}=\frac{e^{-x}-e^{x}}{\left(e^{x}-2+e^{-x}\right)^{2}}
\end{aligned}
$$

The denominator of $f^{\prime \prime}(x)$ is always positive (it is a squared expression). Thus
$\left(f^{\prime \prime}(x)>0\right) \Longleftrightarrow\left(e^{-x}-e^{x}>0\right) \Longleftrightarrow\left(e^{-x}>e^{x}\right) \Longleftrightarrow\left(e^{-2 x}>1\right) \Longleftrightarrow(-2 x>0) \Longleftrightarrow(x<0)$.
Likewise, $\left(f^{\prime \prime}(x)<0\right) \Longleftrightarrow(x>0)$. Thus, f is concave up on $(-\infty, 0), f$ is concave down on $(0, \infty)$, and f has an inflection point at 0 .
8. Use all of the above information to sketch the curve of f on its domain.

