Math 1100 - Calculus, Quiz \#8B - 2009-12-03

1. Compute $\lim _{x \rightarrow 0}\left(\cot (x)-\frac{1}{x}\right)$. (Hint: $\left.\cot (x)=\frac{\cos (x)}{\sin (x)}\right)$

Note: There was an typo in the 'hint' for this question, which no doubt caused a great deal of confusion during the quiz. Therefore, this question is voided. Your mark is based only on question \#2. But here is the solution to the question anyways (for whatever its worth).
Solution: We have $\lim _{x \rightarrow 0} \cot (x)=\infty=\lim _{x \rightarrow 0} \frac{1}{x}$. Thus, this limit is an indeterminate form of type $(\infty-\infty)$. To apply l'Hospital's rule, we must put the two terms over a common denominator:

$$
\begin{equation*}
\cot (x)-\frac{1}{x}=\frac{\cos (x)}{\sin (x)}-\frac{1}{x}=\frac{x \cos (x)-\sin (x)}{x \sin (x)} . \tag{1}
\end{equation*}
$$

Observe that $\lim _{x \rightarrow 0}(x \cos (x)-\sin (x))=0 \cdot 1-0=0=\lim _{x \rightarrow 0} x \sin (x)$. Thus, the limit of expression (1) is an indeterminate form of type $0 / 0$, so we can apply l'Hospital's rule. We have:

$$
\begin{aligned}
\lim _{x \rightarrow 0}\left(\cot (x)-\frac{1}{x}\right) & \overline{\overline{(*)}} \overbrace{\lim _{x \rightarrow 0} \frac{x \cos (x)-\sin (x)}{x \sin (x)}}^{\text {Indeterminate form of type 0/0 }} \overline{\overline{(\mathrm{H} 1)}} \overbrace{\lim _{x \rightarrow 0} \frac{-x \sin (x)}{\sin (x)+x \cos (x)}}^{\text {Indeterminate form of type } 0 / 0} \\
& \overline{\overline{(\mathrm{H} 2)}} \lim _{x \rightarrow 0} \frac{-\sin (x)-x \cos (x)}{2 \cos (x)-x \sin (x)}=\frac{\lim _{x \rightarrow 0}(-\sin (x)-x \cos (x))}{\lim _{x \rightarrow 0}(2 \cos (x)-x \sin (x))} \\
& =\frac{-\sin (0)-0 \cos (0)}{2 \cos (0)-0 \sin (0)}=\frac{0}{2}=0 .
\end{aligned}
$$

Here, $(*)$ is by equation (1). Next, (H1) is l'Hospital's rule with $f(x):=x \cos (x)-\sin (x)$ so that $f^{\prime}(x)=\cos (x)-x \sin (x)-\cos (x)=-x \sin (x)$, while $g(x):=x \sin (x)$, so that $g^{\prime}(x)=$ $\sin (x)+x \cos (x)$. Finally, (H2) is I'Hospital's rule with $f^{\prime \prime}(x)=-\sin (x)-x \cos (x)$ and $g^{\prime \prime}(x)=$ $\cos (x)+\cos (x)-x \sin (x)=2 \cos (x)-x \sin (x)$.
2. Compute $\lim _{x \searrow 0} x^{\left(x^{2}\right)}$.

Solution: We have $\lim _{x \searrow 0} x=0=\lim _{x \backslash 0} x^{2}$, so this limit is an indeterminate form of type 0^{0}. We take the logarithm and apply l'Hospital's rule. We have:

$$
\begin{aligned}
\ln \left(x^{\left(x^{2}\right)}\right) & =x^{2} \cdot \ln (x) . \quad \text { Thus, } \\
\ln \left(\lim _{x \searrow 0} x^{\left(x^{2}\right)}\right) & =\lim _{x \searrow 0} \ln \left(x^{\left(x^{2}\right)}\right)=\lim _{x \searrow 0} x^{2} \cdot \ln (x)=\lim _{x \searrow 0} \frac{\ln (x)}{x^{-2}} \quad \text { (indet. form of type } \frac{\infty}{\infty} \text {) } \\
& \overline{\overline{(H)}} \lim _{x \searrow 0} \frac{x^{-1}}{-2 x^{-3}}=\lim _{x \searrow 0}-\frac{1}{2} x^{3-1}=-\frac{1}{2} \lim _{x \searrow 0} x^{2}=0 .
\end{aligned}
$$

Here, (H) is I'Hospital's rule, with $f(x)=\ln (x)$ so that $f^{\prime}(x)=x^{-1}$, and $g(x)=x^{-2}$ so that $g^{\prime}(x)=-2 x^{-3}$.
This, of course, is the limit of the logarithm of the original expression. It follows that $\lim _{x \searrow 0} x^{\left(x^{2}\right)}=$ $\exp (0)=1$.

