Math 1100 - Calculus, Quiz \#8A - 2009-11-30

1. Compute $\lim _{x \rightarrow \infty} x^{4} \cdot \exp \left(-x^{2}\right)$.

Solution: Let $f(x):=x^{4}$ and $g(x):=\exp \left(-x^{2}\right)$. Observe that $\lim _{x \rightarrow \infty} x^{4}=\infty$ and $\lim _{x \rightarrow \infty} \exp \left(-x^{2}\right)=$ $\lim _{y \rightarrow-\infty} \exp (y)=0$ (making the change of variables $y=-x^{2}$). Thus, the limit is an indeterminate product of type $\infty \cdot 0$. Let $G(x):=\exp \left(x^{2}\right)$; then $g(x)=1 / G(x)$, and $\lim _{x \rightarrow \infty} G(x)=0$. We have:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} x^{4} \cdot \exp \left(-x^{2}\right) & =\overbrace{\lim _{x \rightarrow \infty} \frac{x^{4}}{\exp \left(x^{2}\right)}}^{\text {(Indet. form of type } \infty / \infty)} \overline{\overline{(\mathrm{H} 1)}} \lim _{x \rightarrow \infty} \frac{4 x^{3}}{2 x \cdot \exp \left(x^{2}\right)}=\overbrace{\lim _{x \rightarrow \infty} \frac{2 x^{2}}{\exp \left(x^{2}\right)}}^{\text {(Indet. form of type } \infty / \infty)} \\
& \overline{\overline{(\mathrm{H} 2)}} \lim _{x \rightarrow \infty} \frac{4 x}{2 x \cdot \exp \left(x^{2}\right)}=\lim _{x \rightarrow \infty} \frac{2}{\exp \left(x^{2}\right)} \overline{\overline{(*)}} \lim _{y \rightarrow \infty} \frac{2}{e^{y}}=\lim _{y \rightarrow \infty} 2 e^{-y} \\
& =0 .
\end{aligned}
$$

Here, (H1) is I'Hospital's rule, with $f(x):=x^{4}$ so that $f^{\prime}(x)=4 x^{3}$, while $G(x):=\exp \left(x^{2}\right)$ so that $G^{\prime}(x)=2 x \exp \left(x^{2}\right)$. Next (H2) is I'Hospital's rule, with $f_{1}(x):=2 x^{2}$ so that $f_{1}^{\prime}(x)=4 x$, while $G(x):=\exp \left(x^{2}\right)$ so that again $G^{\prime}(x)=2 x \exp \left(x^{2}\right)$. Finally, $(*)$ is the change of variables $y=x^{2}$, so that $y \rightarrow \infty$ as $x \rightarrow \infty$.
2. Compute $\lim _{x \rightarrow \infty} x^{1 / x}$.

Solution: We have $\lim _{x \rightarrow \infty} x=\infty$, whereas $\lim _{x \rightarrow \infty} \frac{1}{x}=0$. Thus, this limit is an indeterminate form of type ∞^{0}. We take the logarithm and apply l'Hospital's rule. We have:

$$
\begin{aligned}
\ln \left(x^{1 / x}\right) & =\frac{1}{x} \ln (x) . \quad \text { Thus, } \\
\ln \left(\lim _{x \rightarrow \infty} x^{1 / x}\right) & =\lim _{x \rightarrow \infty} \ln \left(x^{1 / x}\right)=\lim _{x \rightarrow \infty} \frac{\ln (x)}{x} \quad \text { (indet. form of type } \frac{\infty}{\infty} \text {) } \\
& \overline{\overline{(H)}} \lim _{x \rightarrow \infty} \frac{1 / x}{1}=\lim _{x \rightarrow \infty} \frac{1}{x}=0 .
\end{aligned}
$$

Here, (H) is I'Hospital's rule, with $f(x)=\ln (x)$ so that $f^{\prime}(x)=1 / x$, and $g(x)=x$ so that $g^{\prime}(x)=1$.
This, of course, is the limit of the logarithm of the original expression. It follows that $\lim _{x \rightarrow \infty} x^{1 / x}=$ $\exp (0)=1$.

