Math 1100 - Calculus, Quiz \#7B - 2009-11-27

1. Let $f(x):=\sqrt[3]{1+x}$ for all $x \geq 0$.
(a) Show that $f^{\prime}(x)<\frac{1}{3}$ for all $x>0$.

Solution: For all $x>0$, we have

$$
f^{\prime}(x)=\frac{1}{3(1+x)^{2 / 3}}<\frac{1}{3},
$$

where the inequality is because $(1+x)^{2 / 3}>1$ because $(1+x)>1$ because $x>0$.
(b) Show that $f(x) \leq 1+\frac{1}{3} x$ for all $x>0$.

Solution: (by contradiction) Let $f(x):=\sqrt[3]{1+x}$.
Suppose $f(x)>1+\frac{1}{3} x$ for some $x>0$. Then the Mean Value Theorem says there is some $y \in(0, x)$ such that

$$
f^{\prime}(y)=\frac{f(x)-f(0)}{x-0}=\frac{f(x)-1}{x}>\frac{1+\frac{1}{3} x-1}{x}=\frac{\frac{1}{3} x}{x}=\frac{1}{3} .
$$

But this contradicts the conclusion of part (a). By contradiction, we cannot have $f(x)>1+\frac{1}{3} x$; hence $f(x) \leq 1+\frac{1}{3} x$
2. Define $f:[0,3] \longrightarrow \mathbb{R}$ by $f(x):=x^{3}-3 x+1$. Find the global maximum and global minimum of f on the interval $[0,3]$.

Solution: If $f(x):=x^{3}-3 x+1$, then $f^{\prime}(x)=3 x^{2}-3=3(x+1)(x-1)$, for all $x \in(0,3)$, and f is differentiable everywhere on $(0,3)$. Thus the critical points of f are at the roots of f^{\prime}-namely at ± 1. However, -1 is not in the domain, so we ignore it. To identify the global maximum and global minimum of f we compute the value of f at the critical point 1 , and also at both endpoints. We have:

$$
\begin{aligned}
& f(1)=1-3+1=-1 ; \\
& f(3)=27-9+1=19 ; \\
& f(0)=0+0+1=1 .
\end{aligned}
$$

Thus, the global maximum is at the endpoint 3, and the global minimum is at the critical point 1.

