Math 1100 — Calculus, Quiz #7B - 2009-11-27

1. Let
$$f(x) := \sqrt[3]{1+x}$$
 for all $x \ge 0$.

(a) Show that
$$f'(x) < \frac{1}{3}$$
 for all $x > 0$.
Solution: For all $x > 0$, we have

$$f'(x) = \frac{1}{3(1+x)^{2/3}} < \frac{1}{3}$$

where the inequality is because $(1+x)^{2/3} > 1$ because (1+x) > 1 because x > 0. \Box

(b) Show that
$$f(x) \leq 1 + \frac{1}{3}x$$
 for all $x > 0$.

Solution: (by contradiction) Let $f(x) := \sqrt[3]{1+x}$.

Suppose $f(x) > 1 + \frac{1}{3}x$ for some x > 0. Then the Mean Value Theorem says there is some $y \in (0, x)$ such that

$$f'(y) = \frac{f(x) - f(0)}{x - 0} = \frac{f(x) - 1}{x} > \frac{1 + \frac{1}{3}x - 1}{x} = \frac{\frac{1}{3}x}{x} = \frac{1}{3}$$

But this contradicts the conclusion of part (a). By contradiction, we cannot have $f(x) > 1 + \frac{1}{3}x$; hence $f(x) \le 1 + \frac{1}{3}x$

- 2. Define $f : [0,3] \longrightarrow \mathbb{R}$ by $f(x) := x^3 3x + 1$. Find the global maximum and global minimum of f on the interval [0,3].
- Solution: If $f(x) := x^3 3x + 1$, then $f'(x) = 3x^2 3 = 3(x + 1)(x 1)$, for all $x \in (0,3)$, and f is differentiable everywhere on (0,3). Thus the critical points of f are at the roots of f'—namely at ± 1 . However, -1 is not in the domain, so we ignore it. To identify the global maximum and global minimum of f we compute the value of f at the critical point 1, and also at both endpoints. We have:

$$f(1) = 1 - 3 + 1 = -1;$$

$$f(3) = 27 - 9 + 1 = 19;$$

$$f(0) = 0 + 0 + 1 = 1.$$

Thus, the global maximum is at the endpoint 3, and the global minimum is at the critical point 1. \Box

(40)

(50)