Math 1100 - Calculus, Quiz \#7A - 2009-11-23

1. Let $f(x):=\frac{1}{5} x^{5}+x+5$. Show that f has exactly one real root (i.e. there is exactly one point $r \in \mathbb{R}$ such that $f(r)=0)$.
Solution: Existence. Note that $\lim _{x \rightarrow-\infty} f(x)=-\infty$ and $\lim _{x \rightarrow \infty} f(x)=\infty$. Thus, there exists some (large enough) $x \in \mathbb{R}$ such that $f(-x)<0<f(x)$. Thus, since f is continuous, the Intermediate Value Theorem says there is at least one point $r \in[-x, x]$ such that $f(r)=0$.

Uniqueness. (by contradiction) Suppose there were two points $r_{1}<r_{2}$ in \mathbb{R} such that $f\left(r_{1}\right)=0=$ $f\left(r_{2}\right)$. Then Rolle's Theorem says there is some $x \in\left[r_{1}, r_{2}\right]$ such that $f^{\prime}(x)=0$. But $f^{\prime}(x)=x^{4}+1$. Thus, $f^{\prime}(x)=0$ if and only if $x^{4}=-1$, and there is no $x \in \mathbb{R}$ such that $x^{4}=-1$. Thus, f cannot have two distinct roots -there can be only one.
2. Define $f:[0,3] \longrightarrow \mathbb{R}$ by $f(x):=3 x^{2}-12 x+5$. Find the global maximum and global minimum of f on the interval $[0,3]$.
Solution: If $f(x):=3 x^{2}-12 x+5$, then $f^{\prime}(x)=6 x-12$, for all $x \in(0,3)$. Thus, f is differentiable everywhere on $(0,3)$. Thus the only critical point of f is the root of f^{\prime}-namely $x=2$. To identify the global maximum and global minimum of f we compute the value of f at the critical point 1 , and also at both endpoints. We have:

$$
\begin{aligned}
& f(2)=12-24+5=-7 ; \\
& f(3)=27-36+5=-4 ; \\
& f(0)=0+0+5=5 .
\end{aligned}
$$

Thus, the global maximum is at the endpoint 0 , and the global minimum is at the critical point 2.

