Math 1100 - Calculus, Quiz \#6B - 2009-11-19

A searchlight on top of a tower rotates at a constant speed of 1 revolution per minute. There is a brick wall 50 m from the tower, and there is a road stretching in a straight line from the tower to the closest point on the wall, where there is a door. The searchlight makes a spot of light on the wall. How fast is this spot of light moving towards the door when it is 20 m from the door?
$\left(\right.$ Hint: $\arctan ^{\prime}(x)=\frac{1}{1+x^{2}}$)
Solution: Let $x(t):=$ the distance from the light spot to the door. We want to solve for $x^{\prime}(t)$ when $x(t)=20$.

Let $\theta(t):=$ the angle that the searchlight beam makes with road. Then $\tan (\theta(t))=x(t) / 50$. Thus, $\theta(t)=\arctan (x(t) / 50)$. Differentiating both sides, we have:

$$
\theta^{\prime}(t)=\arctan ^{\prime}\left(\frac{x(t)}{50}\right) \cdot \frac{x^{\prime}(t)}{50}=\frac{\frac{x^{\prime}(t)}{50}}{1+\left(\frac{x(t)}{50}\right)^{2}}=\frac{50 x^{\prime}(t)}{2500+x(t)^{2}} .
$$

We know that $\theta^{\prime}(t)=2 \pi / 60$ radians/second, because the light beam completes one revolution (i.e. 2π radians) per minute (i.e. 60 seconds). We also know that $x(t)=20$. Substituting all this, we have:

$$
\frac{2 \pi}{60}=\frac{50 x^{\prime}(t)}{2500+20^{2}}=\frac{50 x^{\prime}(t)}{2500+400}=\frac{50 x^{\prime}(t)}{2900}
$$

Simplifying, we get $x^{\prime}(t)=\frac{2 \cdot 2900 \cdot \pi}{60 \cdot 50}=\frac{29 \pi}{15} \mathrm{~m} / \mathrm{s}$.

