Math 1100 - Calculus, Quiz \#6A - 2009-11-16

A spherical snowball is melting. Its surface area decreases at a constant rate of $3 \mathrm{~cm}^{3} / \mathrm{min}$. At what rate is the radius of the snowball decreasing when its radius is 10 cm ?
(Hint: Area of sphere $=4 \pi$ radius 2)
Solution: Let $r(t)=$ radius of snowball at time t. We want to solve for $r^{\prime}(t)$ when $r(t)=10$.
Let $A(t)=$ area of snowball at time t. Then we have $A(t)=4 \pi r(t)^{2}$. Thus,

$$
A^{\prime}(t)=8 \pi r(t) \cdot r^{\prime}(t)
$$

However, we are told that $A(t)=3$, while $r(t)=10$. We substitute this information to get:

$$
3=A^{\prime}(t)=8 \pi r(t) \cdot r^{\prime}(t)=80 \pi r^{\prime}(t) .
$$

Solving, we have $r^{\prime}(t)=\frac{3}{80 \pi}$.

