## Math 1100 - Calculus, Quiz \#4A - 2009-10-19

1. Let $f(x):=3 x^{2}-2 x+1$. Compute the derivative $f^{\prime}(x)$ using the 'limit' definition of derivative. (Do not just apply the 'power rule' to get the answer).

## Solution:

$$
\begin{aligned}
f^{\prime}(x) & :=\lim _{\epsilon \rightarrow 0} \frac{f(x+\epsilon)-f(x)}{\epsilon}=\lim _{\epsilon \rightarrow 0} \frac{\left(3(x+\epsilon)^{2}-2(x+\epsilon)+1\right)-\left(3 x^{2}-2 x+1\right)}{\epsilon} \\
& =\lim _{\epsilon \rightarrow 0} \frac{3 x^{2}+6 x \epsilon+3 \epsilon^{2}-2 x-2 \epsilon+1-3 x^{2}+2 x-1}{\epsilon} \\
& =\lim _{\epsilon \rightarrow 0} \frac{6 x \epsilon+3 \epsilon^{2}-2 \epsilon}{\epsilon} \\
& =\lim _{\epsilon \rightarrow 0}(6 x+3 \epsilon-2)=6 x-2 .
\end{aligned}
$$

2. Here is the graph of the function $g$. Sketch the graph of its derivative $g^{\prime}$. In your sketch, divide the real line into intervals corresponding to regions where $g$ is increasing, decreasing, etc. and relate this to corresponding properties of $g^{\prime}$.


Solution: In intervals $\mathbf{A}$ and $\mathbf{D}$, the function $g$ is increasing and $g^{\prime}$ is positive.
In interval $\mathbf{B}$ and $\mathbf{C}$, the function $g$ is decreasing and $g^{\prime}$ is negative.
(Bonus) In intervals $\mathbf{A}$ and $\mathbf{B}$, the function $g$ is curving down and $g^{\prime}$ is decreasing. In intervals $\mathbf{C}$ and $\mathbf{D}$, the function $g$ is curving up and $g^{\prime}$ is increasing.

