Math 1100 — Calculus, Quiz #3B — 2009-10-09

Let $f(x) := x^2 + x - 4$. We will show that f is continuous at the point a = 3, by using the " ϵ, δ " definition of limits.

(10) 1. Factor the polynomial $x^2 + x - 12$.

(20)

(40)

(10)

Solution:
$$x^2 + x - 12 = (x+4)(x-3)$$
.

2. Suppose |x-3| < 1. Show that $|f(x)-8| < 8 \cdot |x-3|$.

Solution: $f(x) - 8 = (x^2 + x - 4) - 8 = x^2 + x - 12 = (x + 4)(x - 3)$, the polynomial we factored in #1. If |x - 3| < 1, then 2 < x < 4. Thus, 6 < x + 4 < 8. Thus, |x + 4| < 8. Thus,

$$|f(x) - 8| = |x^2 + x - 12| = |x + 4| \cdot |x - 3| \le 8 \cdot |x - 3|.$$

where (*) is by #1.

3. Let $\epsilon > 0$. Give a procedure to construct $\delta > 0$ such that, for any $x \in \mathbb{R}$, we have:

$$(|x-3| < \delta) \Longrightarrow (|f(x)-8| < \epsilon). \tag{1}$$

Solution: Let $\delta := \min\{1, \epsilon/8\}$. Let $x \in \mathbb{R}$. If $|x-3| < \delta$, then |x-3| < 1 (because $\delta \le 1$). Thus, we have:

$$|f(x)-8| < 8 \cdot |x-3| < 8 \cdot \delta \leq \epsilon.$$

Here, (*) is by #2, (\dagger) is because $|x-3| < \delta$, and (\dagger) is because $\delta \le \epsilon/8$.

Thus, we conclude that $|f(x) - 8| < \epsilon$, as desired.

4. Explain how #3 implies that f is continuous at 3.

Solution: We have shown that, for any $\epsilon>0$, we can construct a $\delta>0$ such that statement (1) holds. This means that $\lim_{x\to 3}f(x)=8$. But f(3)=9+3-4=8. Thus, f is continuous at 3.

(20) 5. In fact, f is continuous everywhere on \mathbb{R} (this can be shown by generalizing the above proof). Using this fact, show that there exists some $x \in [0, 2]$ such that f(x) = 0.

Solution: We have f(0) = -4 < 0 < 2 = f(2). Thus, the Intermediate Value Theorem implies that there exists some $x \in [0,2]$ such that f(x) = 0.