Math 1100 - Calculus, Quiz \#3B - 2009-10-09

Let $f(x):=x^{2}+x-4$. We will show that f is continuous at the point $a=3$, by using the " ϵ, δ " definition of limits.

1. Factor the polynomial $x^{2}+x-12$.

Solution: $x^{2}+x-12=(x+4)(x-3)$.
2. Suppose $|x-3|<1$. Show that $|f(x)-8|<8 \cdot|x-3|$.

Solution: $f(x)-8=\left(x^{2}+x-4\right)-8=x^{2}+x-12=(x+4)(x-3)$, the polynomial we factored in $\# 1$. If $|x-3|<1$, then $2<x<4$. Thus, $6<x+4<8$. Thus, $|x+4|<8$. Thus,

$$
|f(x)-8|=\left|x^{2}+x-12\right| \overline{\left({ }^{*}\right)}|x+4| \cdot|x-3| \leq 8 \cdot|x-3| .
$$

where $(*)$ is by $\# 1$.
3. Let $\epsilon>0$. Give a procedure to construct $\delta>0$ such that, for any $x \in \mathbb{R}$, we have:

$$
\begin{equation*}
(|x-3|<\delta) \Longrightarrow(|f(x)-8|<\epsilon) \tag{1}
\end{equation*}
$$

Solution: Let $\delta:=\min \{1, \epsilon / 8\}$. Let $x \in \mathbb{R}$. If $|x-3|<\delta$, then $|x-3|<1$ (because $\delta \leq 1$). Thus, we have:

$$
|f(x)-8| \underset{(*)}{<} 8 \cdot|x-3| \underset{(\dagger)}{<} 8 \cdot \delta \underset{(\pm)}{\leq} \epsilon .
$$

Here, $(*)$ is by $\# 2,(\dagger)$ is because $|x-3|<\delta$, and (\ddagger) is because $\delta \leq \epsilon / 8$.
Thus, we conclude that $|f(x)-8|<\epsilon$, as desired.
4. Explain how $\# 3$ implies that f is continuous at 3 .

Solution: We have shown that, for any $\epsilon>0$, we can construct a $\delta>0$ such that statement (1) holds. This means that $\lim _{x \rightarrow 3} f(x)=8$. But $f(3)=9+3-4=8$. Thus, f is continuous at 3 .
5. In fact, f is continuous everywhere on \mathbb{R} (this can be shown by generalizing the above proof). Using this fact, show that there exists some $x \in[0,2]$ such that $f(x)=0$.
Solution: We have $f(0)=-4<0<2=f(2)$. Thus, the Intermediate Value Theorem implies that there exists some $x \in[0,2]$ such that $f(x)=0$.

