Math 1100 — Calculus, Quiz #3A — 2009-10-05

Let $f(x) := x^2$. We will show that f is continuous at the point a = 5, by using the " ϵ, δ " definition of limits.

1. Factor the polynomial $x^2 - 25$. (10)Solution: $x^2 - 25 = (x + 5)(x - 5)$.

2. Suppose |x - 5| < 1. Show that $|x^2 - 25| < 11 \cdot |x - 5|$. (20)Solution: If |x-5| < 1, then 4 < x < 6. Thus, 9 < x+5 < 11. Thus, |x+5| < 11. Thus,

$$|x^2 - 25| = |x + 5| \cdot |x - 5| \le 11 \cdot |x - 5|.$$

where (*) is by #1.

3. Let $\epsilon > 0$. Give a procedure to construct $\delta > 0$ such that, for any $x \in \mathbb{R}$, we have: (40)

$$(|x-5| < \delta) \Longrightarrow (|x^2 - 25| < \epsilon).$$
 (1)

Solution: Let $\delta := \min\{1, \epsilon/11\}$. Let $x \in \mathbb{R}$. If $|x-5| < \delta$, then |x-5| < 1 (because $\delta \le 1$). Thus, we have:

$$|x^2 - 25| < 11 \cdot |x - 5| < 11 \cdot \delta \le \epsilon.$$

Here, (*) is by #2, (†) is because $|x-5| < \delta$, and (‡) is because $\delta \le \epsilon/11$.

Thus, we conclude that $|x^2 - 25| < \epsilon$, as desired.

(10)4. Explain how #3 implies that f is continuous at 5.

Solution: We have shown that, for any $\epsilon > 0$, we can construct a $\delta > 0$ such that statement (1) holds. This means that $\lim_{x\to 5} f(x) = 25$. But f(5) = 25. Thus, f is continuous at 5.

5. In fact, f is continuous everywhere on \mathbb{R} (this can be shown by generalizing the above (20)proof). Using this fact, show that there exists some $x \in [5, 6]$ such that f(x) = 30.

> **Solution:** We have f(5) = 25 < 30 < 36 = f(6). Thus, the Intermediate Value Theorem implies that there exists some $x \in [5, 6]$ such that f(x) = 30.