Math 1100 - Calculus, Quiz \#3A - 2009-10-05

Let $f(x):=x^{2}$. We will show that f is continuous at the point $a=5$, by using the " ϵ, δ " definition of limits.

1. Factor the polynomial $x^{2}-25$.

Solution: $x^{2}-25=(x+5)(x-5)$.
2. Suppose $|x-5|<1$. Show that $\left|x^{2}-25\right|<11 \cdot|x-5|$.

Solution: If $|x-5|<1$, then $4<x<6$. Thus, $9<x+5<11$. Thus, $|x+5|<11$. Thus,

$$
\left|x^{2}-25\right| \overline{(*)}|x+5| \cdot|x-5| \leq 11 \cdot|x-5| .
$$

where $(*)$ is by $\# 1$.
3. Let $\epsilon>0$. Give a procedure to construct $\delta>0$ such that, for any $x \in \mathbb{R}$, we have:

$$
\begin{equation*}
(|x-5|<\delta) \Longrightarrow\left(\left|x^{2}-25\right|<\epsilon\right) \tag{1}
\end{equation*}
$$

Solution: Let $\delta:=\min \{1, \epsilon / 11\}$. Let $x \in \mathbb{R}$. If $|x-5|<\delta$, then $|x-5|<1$ (because $\delta \leq 1$). Thus, we have:

$$
\left|x^{2}-25\right| \underset{(*)}{<} 11 \cdot|x-5| \underset{(\dagger)}{<} 11 \cdot \delta \underset{(\neq)}{\leq} \epsilon .
$$

Here, $(*)$ is by $\# 2,(\dagger)$ is because $|x-5|<\delta$, and (\ddagger) is because $\delta \leq \epsilon / 11$.
Thus, we conclude that $\left|x^{2}-25\right|<\epsilon$, as desired.
4. Explain how $\# 3$ implies that f is continuous at 5 .

Solution: We have shown that, for any $\epsilon>0$, we can construct a $\delta>0$ such that statement (1) holds. This means that $\lim _{x \rightarrow 5} f(x)=25$. But $f(5)=25$. Thus, f is continuous at 5 .
5. In fact, f is continuous everywhere on \mathbb{R} (this can be shown by generalizing the above proof). Using this fact, show that there exists some $x \in[5,6]$ such that $f(x)=30$.
Solution: We have $f(5)=25<30<36=f(6)$. Thus, the Intermediate Value Theorem implies that there exists some $x \in[5,6]$ such that $f(x)=30$.

