Math 1100 - Calculus, Quiz \#2B - 2009-10-01

1. Let $f(x):=\frac{(4+x)^{2}-16}{x}$. Use the 'limit laws' from section 2.3 in the book to compute $\lim _{x \rightarrow 0} f(x)$.
Solution: For all $x \neq 0$, we have

$$
f(x)=\frac{(4+x)^{2}-16}{x}=\frac{16+8 x+x^{2}-16}{x}=\frac{8 x+x^{2}}{x}=8+x
$$

Thus, $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} 8+x=8$.

2. Let $g: \mathbb{R} \longrightarrow \mathbb{R}$ be the function portrayed in the picture. Based on this picture, what are $\lim _{x>0} g(x)$ and $\lim _{x \searrow 0} g(x) ?$
Solution: $\lim _{x \nearrow 0} g(x)=-2$., while $\lim _{x \searrow 0} g(x)=3$.
3. Combine your answers from $\# 1$ and $\# 2$.
(a) What is $\lim _{x>0}(f(x)+g(x))$?
(b) What is $\lim _{x \searrow 0} f(x) \cdot g(x)$?

Solution: (a) $\lim _{x / 0}(f(x)+g(x))=\lim _{x / 0} f(x)+\lim _{x / 0} g(x)=8+-2=6$.
(b) $\lim _{x \searrow 0} f(x) \cdot g(x)=\left(\lim _{x \searrow 0} f(x)\right) \cdot\left(\lim _{x \searrow 0} g(x)\right)=8 \cdot 3=24$.

